K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

HQ
Hà Quang Minh
Giáo viên
30 tháng 9 2023

a)

Nếu \(0 < x \le 2\) thì \(T(x) = 1,2x\) (triệu đồng)

Nếu \(x > 2\) thì \(T(x) = 1,2.2 + 0,9.(x - 2) = 0,9x + 0,6\) (triệu đồng)

Số tiền phải trả sau khi thuê x ngày là

\(T(x) = \left\{ \begin{array}{l}1,2x\quad \quad \quad \;(0 < x \le 2)\\0,9x + 0,6\quad (x > 2)\end{array} \right.\)

b) \(T(2) = 1,2.2=2,4\)  (triệu đồng)

Ý nghĩa: số tiền khách phải trả khi thuê 2 ngày là 2,4 triệu đồng

\(T(3) = 0,9.3+0,6 = 3,3\)  (triệu đồng)

Ý nghĩa: số tiền khách phải trả khi thuê 3 ngày là 3,3 triệu đồng

\(T(5) = 0,9.5+0,6=5,1\)

Ý nghĩa: số tiền khách phải trả khi thuê 5 ngày là 5,1 triệu đồng

24 tháng 9 2023

a) Số tiền ông An phải trả cho việc thuê xe ô tô từ thứ Hai đến thứ Sáu là:

900.5 + 8x = 4 500 + 8x (nghìn đồng).

Số tiền ông An phải trả cho việc thuê xe ô tô từ thứ Hai đến thứ Sáu là:

1 500.2 + 10y = 3 000 + 10y (nghìn đồng).

Tổng số tiền ông An phải trả cho việc thuê xe trong một tuần là:

4 500 + 8x + 3 000 + 10y = 7 500 + 8x + 10y (nghìn đồng).

Để tổng số tiền ông An phải trả không quá 14 triệu đồng thì

7 500 + 8x + 10y ≤ 14 000

⇔ 8x + 10y ≤ 6 500.

⇔ 4x + 5y ≤ 3 250.

Vậy bất phương trình biểu thị mối liên hệ giữa x và y sao cho tổng số tiền ông An phải trả không quá 14 triệu đồng là 4x + 5y ≤ 3 250.

b)

Vẽ đường thẳng d: 4x + 5y = 3 250 trên mặt phẳng tọa độ.

Lấy gốc tọa độ O(0; 0) và tính 4.0 + 5.0 = 0 < 3 250.

Do đó miền nghiệm của bất phương trình là nửa mặt phẳng có bờ là đường thẳng d không chứa gốc tọa độ và cả đường thẳng d (miền không bị gạch kể cả biên)

Ôn An muốn thuê một chiếc ô tô (có lái xe) trong một tuần. Giá thuê xe được cho (ảnh 1)

24 tháng 9 2023

Tham khảo:

a)

Ta có 14 triệu = 14 000 (nghìn đồng)

Phí cố định là: 900.5 + 1500.2 = 7500 (nghìn đồng)

Phí tính theo quãng đường là:

x km trong các ngày từ thứ Hai đến thứ Sáu là 8x (nghìn đồng)

y km trong 2 cuối tuần là 10y (nghìn đồng)

Tổng số tiền ông An phải trả là 8x+10y +7500 (nghìn đồng)

Vì số tiền không quá 14 triệu đồng nên ta có :

\(\begin{array}{l}8x + 10y +7500 \le 14000\\ \Leftrightarrow 4x + 5y \le 3250\end{array}\)

Vậy bất phương trình cần tìm là \(4x + 5y \le 3250\)

b)

 

Bước 1: Vẽ đường thẳng \(4x + 5y = 3250\)(nét liền)

Bước 2: Thay tọa độ điểm O(0;0) vào biểu thức 4x+5y ta được:

4.0+5.0=0<3250

=> Điểm O thuộc miền nghiệm

=> Miền nghiệm là nửa mặt phẳng bờ là đường thẳng \(4x + 5y = 3250\) và chứa gốc tọa độ và (x;y) nằm trong miền tam giác OAB kể cả đoạn AB.

HQ
Hà Quang Minh
Giáo viên
23 tháng 9 2023

Công ty A: \({y_A} = 3750 + 5.x\)(nghìn đồng)

Công ty B: \({y_B} = 2500 + 7,5.x\)(nghìn đồng)

Với \(550 \le x \le 600\)

Ta có:

\(\begin{array}{l}{y_A} - {y_B}=\left( {3750 + 5.x} \right) - \left( {2500 + 7,5x} \right)\\ = 1250 - 2,5x\end{array}\)

Mà \(550 \le x \le 600\)\( \Leftrightarrow 2,5.550 \le 2,5x \le 2,5.600\)

\(\begin{array}{l} \Leftrightarrow 1250 - 1370 \ge 1250 - 2,5x \ge  - 250\\ \Leftrightarrow  - 250 \le 1250 - 2,5x \le  - 120\\ \Rightarrow {y_A} - {y_B} < 0\end{array}\)

Vậy chi phí thuê xe công ty A thấp hơn.

15 tháng 1 2019

Chọn A

Gọi x; y lần lượt là số xe loại M, loại F cần thuê

Từ bài toán ta được hệ bất phương trình

Tổng chi phí T(x; y) = 4x+ 3y (triệu đồng)

Bài toán trở thành  là tìm x; y nguyên không âm thoả mãn hệ (*)  sao cho T( ;xy)  nhỏ nhất.

Từ đó ta cần thuê 5 xe hiệu M và 4 xe hiệu F thì chi phí vận tải là thấp nhất.

Một doanh nghiệp tư nhân A chuyên kinh doanh xe gắn máy các loại. Hiện nay doanh nghiệp đang tập trung chiến lược vào kinh doanh xe hon đa Future Fi với chi phí mua vào một chiếc là 27 (triệu đồng) và bán ra với giá là 31 triệu đồng. Với giá bán này thì số lượng xe mà khách hàng sẽ mua trong một năm là 600 chiếc. Nhằm mục tiêu đẩy mạnh hơn nữa lượng tiêu thụ dòng xe đang ăn khách này, doanh...
Đọc tiếp

Một doanh nghiệp tư nhân A chuyên kinh doanh xe gắn máy các loại. Hiện nay doanh nghiệp đang tập trung chiến lược vào kinh doanh xe hon đa Future Fi với chi phí mua vào một chiếc là 27 (triệu đồng) và bán ra với giá là 31 triệu đồng. Với giá bán này thì số lượng xe mà khách hàng sẽ mua trong một năm là 600 chiếc. Nhằm mục tiêu đẩy mạnh hơn nữa lượng tiêu thụ dòng xe đang ăn khách này, doanh nghiệp dự định giảm giá bán và ước tính rằng nếu giảm 1 triệu đồng mỗi chiếc xe thì số lượng xe bán ra trong một năm là sẽ tăng thêm 200 chiếc. Vậy doanh nghiệp phải định giá bán mới là bao nhiêu để sau khi đã thực hiện giảm giá, lợi nhuận thu được sẽ là cao nhất.

A. 30 triệu đồng.

B. 29 triệu đồng.

C. 30,5 triệu đồng.

D. 29,5 triệu đồng

1
5 tháng 5 2017

7 tháng 2 2019

Đáp án A

HQ
Hà Quang Minh
Giáo viên
26 tháng 9 2023

Để cửa hàng có lãi thì lợi nhuận lớn hơn 0, suy ra \(I > 0 \Leftrightarrow  - 3{x^2} + 200x - 2325 > 0\)

Tam thức \(I =  - 3{x^2} + 200x - 2325\) có \(\Delta  = 12100 > 0\), có hai nghiệm phân biệt \({x_1} = 15;{x_2} = \frac{{155}}{3}\) và có \(a =  - 3 < 0\)

Ta có bảng xét dấu như sau:

 

Vậy ta thấy cửa hàng có lợi nhuận khi \(x \in \left( {15;\frac{{155}}{3}} \right)\) (kg)