Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1:
(1 - 2 + 3 - 4+ ... - 96 + 97 - 98 + 99).\(x\) = 2000
Đặt A = 1 - 2 + 3 - 4 +...- 96 + 97 - 98 + 99
Xét dãy số: 1; 2; 3; 4;...;96; 97; 98; 99
Dãy số trên là dãy số cách đều với khoảng cách là: 2 - 1 = 1
Số số hạng của dãy số trên là: (99 - 1): 1 + = 99
Vì 99 : 2 = 49 dư 1
Nhóm 2 số hạng liên tiếp của A thành một nhóm thì A là tổng của 49 nhóm và 99
A = 1 - 2 + 3 - 4 + ... - 96 + 97 - 98 + 99
A = (1- 2) + (3 - 4)+ ...+ (97 - 98) + 99
A = - 1 + (-1) + (-1) +...+ (-1) + 99
A = -1.49 + 99
A = -49 + 99
A = 50 Thay A =
Vậy 50.\(x\) = 2000
\(x\) = 2000 : 50
\(x\) = 40
2, n và n + 1
Gọi ước chung lớn nhất của n và n + 1 là d
Ta có: n ⋮ d; n + 1 ⋮ d
⇒ n + 1 - n ⋮ d
1 ⋮ d
d = 1
Vậy ƯCLN(n +1; n) = 1 Hay n + 1; n là hai số nguyên tố cùng nhau (đpcm)
a)\(M=\frac{2019\times2020-2}{2018+2018\times2020}=\frac{2019\times2020-2}{2018+2018\times2020+2020-2020}=\frac{2019\times2020-2}{\left(2018+1\right)\times2020+2018-2020}=\frac{2019\times2020-2}{2019\times2020-2}=1\\ N=\frac{-2019\times20202020}{20192019\times2020}=\frac{-2019\times10001\times2020}{2019\times10001\times2020}=-1\)
b)\(5\left|x-1\right|=3M-2N=5\\ \left|x-1\right|=1\Rightarrow\hept{\begin{cases}x-1=1\Rightarrow x=2\\x-1=-1\Rightarrow x=0\end{cases}}\)
Bài 1:
Với $n$ nguyên, để $\frac{4n+3}{2n-3}$ nguyên thì:
$4n+3\vdots 2n-3$
$\Rightarrow 2(2n-3)+9\vdots 2n-3$
$\Rightarrow 9\vdots 2n-3$
$\Rightarrow 2n-3$ là ước của $9$
$\Rightarrow 2n-3\in \left\{\pm 1; \pm 3; \pm 9\right\}$
$\Rightarrow n\in \left\{2; 1; 3; 0; 6; -3\right\}$
Bài 2:
Với $n$ nguyên, để $\frac{3n+2}{2n-1}$ nguyên thì:
$3n+2\vdots 2n-1$
$\Rightarrow 2(3n+2)\vdots 2n-1$
$\Rightarrow 6n+4\vdots 2n-1$
$\Rightarrow 3(2n-1)+7\vdots 2n-1$
$\Rightarrow 7\vdots 2n-1$
$\Rightarrow 2n-1\in\left\{\pm 1; \pm 7\right\}$
$\Rightarrow n\in \left\{1; 0; 4; -3\right\}$
ko phải nha
a) Đối với biểu thức A = 2^2020 + 2: - Ta thấy rằng 2^2020 là một số rất lớn, và không dễ để tính căn bậc hai của nó một cách chính xác. - Tuy nhiên, chúng ta có thể xác định rằng 2 là một số nguyên, và căn bậc hai của 2 cũng là một số nguyên. - Vì vậy, ta có thể kết luận rằng biểu thức A không phải là một số chính phương. b) Đối với biểu thức B = 5^(2n+1) + 5^(2n+2) + 5^(2n+3) + 2: - Ta thấy rằng các số mũ 2n+1, 2n+2 và 2n+3 đều là các số nguyên, và 5 cũng là một số nguyên. - Vì vậy, ta có thể tính căn bậc hai của các thành phần này một cách chính xác. - Tuy nhiên, tổng của các thành phần này không đảm bảo là một số chính phương, vì tổng của các số chính phương không nhất thiết phải là một số chính phương. - Vì vậy, ta không thể kết luận rằng biểu thức B là một số chính phương. Tóm lại, biểu thức A và B không được xem là số chính phương.