- Vì f(1)>f(2) => 1.a>2.a . ta dễ dàng thấy a <0 mới thõa mãn 1a>2a . mà trị tuyệt đối của a=5 => a=-5
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:
\(\frac{\left|x-5\right|}{\left|x-3\right|}=\frac{\left|x-1\right|}{\left|x-3\right|}=\frac{\left|x-5\right|-\left|x-1\right|}{\left|x-3\right|-\left|x-3\right|}=\frac{\left|x-5\right|-\left|x-1\right|}{0}\)
Do đó không tồn tại x thỏa mãn.
Bài 1:
-l 4 - x l nhỏ hơn bằng 0
- l x - 23l nhỏ hơn bằng 0
=> x=4 hoặc x=23 thay hai cái này vào xem cái nào có GTLN thì lấy
KQ là -19
Bài 2
cộng hai vế
x.(x+y)=90
y.(x+y)=54
lại ta có (x+y).(x+y)=114
=> (x+y)^2 =114
=> x+y =12 => l x+yl=12
k cho mk nhá, mk làm bài này rồi, mk sẽ làm tiếp nếu bạn k
Bài 2:
\(3x^2+5\ge5>0\forall x\)
nên f(x)>0 với mọi x
Vẽ đồ thị giùm nha! Giúp câu chứng minh thôi. Ở đây vẽ đồ thị xấu lém =,=
Ta có: \(y=f\left(x\right)=3x^2+5\)
Ta có: \(x^2\ge0\forall x\) (luôn đúng)
Nên \(3x^2\ge0\). do đó \(y=f\left(x\right)=3x^2+5\ge5\forall x\)
Vậy hàm số \(y=f\left(x\right)=3x^2+5\) luôn dương với mọi x. (đpcm)