Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1. Áp dụng BĐT Cô-si cho 3 số dương a, b, c ta có:
\(a+b+c\ge3\sqrt[3]{abc};\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge3\sqrt[3]{\frac{1}{abc}}\)Nhán vế theo vế 2 BĐT vừa tìm được với nhau ta được:
\(\left(a+b+c\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\ge9\sqrt[3]{abc\cdot\frac{1}{abc}}=9\)Vậy GTNN của ... là 9 đạt được khi a = b = c
2.\(x\left(x+1\right)\left(x+2\right)\left(x+3\right)=\left[x\left(x+3\right)\right]\left[\left(x+1\right)\left(x+2\right)\right]\)\(=\left(x^2+3x\right)\left(x^2+3x+2\right)\)(1)
Đặt \(x^2+3x+1=a\)\(\Rightarrow\left(1\right)=\left(a-1\right)\left(a+1\right)=a^2-1\ge-1\)
Vậy GTNN của ... là -1 đạt được khi \(a^2=0\Leftrightarrow a=0\Leftrightarrow x^2+3x+1=0\Leftrightarrow\orbr{\begin{cases}x=\frac{-3+\sqrt{5}}{2}\\x=\frac{-3-\sqrt{5}}{2}\end{cases}}\)
2) Ta có : \(\left|x-1\right|+\left|1-x\right|=2\) (1)
Xét 3 trường hợp :
1. Với \(x>1\) , phương trình (1) trở thành : \(x-1+x-1=2\Leftrightarrow2x=4\Leftrightarrow x=2\) (thoả mãn)
2. Với \(x< 1\), phương trình (1) trở thành : \(1-x+1-x=2\Leftrightarrow2x=0\Leftrightarrow x=0\)(thoả mãn)
3. Với x = 1 , phương trình vô nghiệm.
Vậy tập nghiệm của phương trình : \(S=\left\{0;2\right\}\)
1) Cách 1:
Ta có ; \(A=\left(a+b+c\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)=1+\frac{a}{b}+\frac{a}{c}+\frac{b}{a}+1+\frac{b}{c}+\frac{c}{a}+\frac{c}{b}+1\)
\(=3+\left(\frac{a}{b}+\frac{b}{a}\right)+\left(\frac{b}{c}+\frac{c}{b}\right)+\left(\frac{a}{c}+\frac{c}{a}\right)\)
Mặt khác theo bất đẳng thức Cauchy :\(\frac{a}{b}+\frac{b}{a}\ge2\sqrt{\frac{a}{b}.\frac{b}{a}}=2\) ;\(\frac{b}{c}+\frac{c}{b}\ge2\) ; \(\frac{c}{a}+\frac{a}{c}\ge2\)
\(\Rightarrow A\ge1+2+2+2=9\). Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}\frac{a}{b}=\frac{b}{a}\\\frac{b}{c}=\frac{c}{b}\\\frac{a}{c}=\frac{c}{a}\end{cases}}\)\(\Leftrightarrow a=b=c\)
Vậy Min A = 9 <=> a = b = c
Cách 2 : Sử dụng bđt Bunhiacopxki : \(\left(a+b+c\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\ge\left(1+1+1\right)^2=9\)
Ta có \(A=[\frac{2}{\left(x+1\right)^3}\left(\frac{1}{x}+1\right)+\frac{1}{x^2+2x+1}\left(\frac{1}{x^2}+1\right)]:\frac{x-1}{x^3}\)
\(\Leftrightarrow A=\left[\frac{2}{\left(x+1\right)^3}.\frac{x+1}{x}+\frac{1}{\left(x+1\right)^2}.\frac{x^2+1}{x^2}\right].\frac{x^3}{x-1}\)
\(\Leftrightarrow A=\left[\frac{2x+x^2+1}{x^2\left(x+1\right)^2}\right].\frac{x^3}{x+1}=\frac{x}{x+1}\)
Để \(A=\frac{x}{x+1}< 1\Leftrightarrow\frac{1}{x+1}>0\Leftrightarrow x>-1\)
Để \(A=1-\frac{1}{x+1}\text{ nguyên thì }\frac{1}{x+1}\text{ nguyên hay }x\in\left\{-2,0\right\} \)
a) ĐKXĐ: \(x\ne-1;0;1.\)Ta có:
\(A=\left[\frac{2}{\left(x+1\right)^3}\left(\frac{1}{x}+1\right)+\frac{1}{x^2+2x+1}\left(\frac{1}{x^2}+1\right)\right]:\frac{x-1}{x^3}\)
\(=\left[\frac{2}{\left(x+1\right)^3}\cdot\frac{x+1}{x}+\frac{1}{\left(x+1\right)^2}\cdot\frac{x^2+1}{x^2}\right]\cdot\frac{x^3}{x-1}\)
\(=\left[\frac{2}{x\left(x+1\right)^2}+\frac{x^2+1}{x^2\left(x+1\right)^2}\right]\cdot\frac{x^3}{x-1}\)
\(=\left[\frac{2x}{x^2\left(x+1\right)^2}+\frac{x^2+1}{x^2\left(x+1\right)^2}\right]\cdot\frac{x^3}{x-1}\)
\(=\frac{2x+x^2+1}{x^2\left(x+1\right)^2}\cdot\frac{x^3}{x-1}\)
\(=\frac{\left(x+1\right)^2\cdot x}{\left(x+1\right)^2\left(x-1\right)}=\frac{x}{x-1}.\)
Vậy \(A=\frac{x}{x-1}\)với \(x\ne-1;0;1.\)
b) A < 1 \(\Leftrightarrow\frac{x}{x-1}< 1\Leftrightarrow\frac{x}{x-1}-1< 0\Leftrightarrow\frac{x}{x-1}-\frac{x-1}{x-1}< 0\)\(\Leftrightarrow\frac{1}{x-1}< 0\)
\(\Leftrightarrow x-1< 0\)(do 1 > 0)\(\Leftrightarrow x< 1.\)
Kết hợp ĐKXĐ, A < 1 khi \(x< 1\)và \(x\ne-1;0.\)
c) \(A\inℤ\Leftrightarrow\frac{x}{x-1}\inℤ.\)Mà \(x\inℤ\)\(\Rightarrow x⋮\left(x-1\right)\Rightarrow\left(x-1+1\right)⋮\left(x-1\right)\Rightarrow1⋮\left(x-1\right)\Rightarrow\left(x-1\right)\inƯ\left(1\right)=\left\{1;-1\right\}.\)Ta lập bảng sau:
\(x-1\) | 1 | -1 |
\(x\) | 2 | 0 |
Kết luận | x thoả mãn ĐKXĐ | x không thoả mãn ĐKXĐ |
Vậy để A nguyên thì x = 2.