K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 10 2018

Ta có sin100=cos800(vì 100+800=900)⇒sin2100=cos2800

sin200=cos700(vì 200+700=900)⇒sin2200=cos2700

Ta có công thức sin2a+cos2a=1

\(P=cos^210^0+cos^220^0+cos^270^0+cos^280^0=cos^210^0+cos^220^0+sin^220^0+sin^210^0=\left(cos^210^0+sin^210^0\right)+\left(cos^220^0+sin^220^0\right)=1+1=2\)

20 tháng 8 2019

\(\cos^25^o+\cos^210^o+....+\cos^285^o\\ =\left(\cos^25^o+\cos^285^o\right)+\left(\cos^210^o+\cos^280^o\right)+...+\left(\cos^240^o+\cos^250^o\right)+\cos^245^o\\ \\ =\left(\cos^25^o+\sin^25^o\right)+\left(\cos^210^o+\sin^210^o\right)+...+\left(\cos^240^o+\sin^240^o\right)+\frac{1}{2}\\ =1+1+...+1+\frac{1}{2}=16+\frac{1}{2}=\frac{33}{2}\)

14 tháng 11 2022

\(A=cos^210^0+cos^280^0+cos^220^0+cos^270^0+cos^230^0+cos^260^0\)

=1+1+1

=3

a: \(=\left(\sin^210^0+\sin^280^0\right)+\left(\sin^220^0+\sin^270^0\right)+\left(\sin^230^0+\sin^260^0\right)+\left(\sin^240^0+\sin^250^0\right)\)

=1+1+1+1

=4

b: \(=\left(\cos^25^0+\cos^285^0\right)+\left(\cos^215^0+\cos^275^0\right)+\left(\cos^225^0+\cos^265^0\right)+\left(\cos^235^0+\cos^255^0\right)+\cos^245^0\)

\(=1+1+1+1+\dfrac{1}{2}=4+\dfrac{1}{2}=\dfrac{9}{2}\)

22 tháng 7 2018

Bài 1 :

\(D=cos^220^0+cos^230^0+cos^240^0+cos^250^0+cos^260^0+cos^270^0\)

\(=\left(cos^220^0+cos^270^0\right)+\left(cos^230^0+cos^260^0\right)+\left(cos^240^0+cos^250^0\right)\)

\(=1+1+1=3\)

Bài 2 :

\(E=sin^25^0+sin^225^0+sin^245^0+sin^265^0+sin^285^0\)

\(=\left(sin^25^0+sin^285^0\right)+\left(sin^225^0+sin^265^0\right)+sin^245^0\)

\(=1+1+\dfrac{1}{2}=\dfrac{5}{2}\)

Bài 3 :

\(F=sin^6\alpha+cos^6\alpha+3sin^2\alpha.cos^2\alpha\)

\(=1-3sin^2\alpha.cos^2\alpha+3sin^2a.cos^2\alpha\)

\(=1\)

10 tháng 7 2016

áp dụng  sin2a=cos2(90-a)

và sin2a+cos2a=1

10 tháng 7 2016

áp dụng cả a,b đó,,,,, coi

15 tháng 8 2017

a, \(\cos^215+\cos^225+\cos^235+\cos^245+\sin^235+\sin^225+\sin^215\)

=\(\left(\cos^215+\sin^215\right)+\left(\cos^225+\sin^225\right)+\left(\cos^235+\sin^235\right)+\cos^245\)

=\(1+1+1+\frac{1}{2}=\frac{7}{2}\)

b.\(\sin^210-\sin^220-\sin^230-\sin^240-\cos^240-\cos^220+\cos^210\)

=\(\left(\sin^210+\cos^210\right)-\left(\sin^220+\cos^220\right)-\left(\sin^240+\cos^240\right)-\sin^230\)

=\(1-1-1-\frac{1}{4}=-\frac{5}{4}\)

c,\(\sin15+\sin75-\sin75-\cos15+\sin30=\sin30=\frac{1}{2}\)

5 tháng 6 2019

Botay.com.vn

5 tháng 6 2019

\(\cos^21^o+\cos^289^o=\cos^21^o+\cos^2\left(90^o-1^o\right)=\cos^21^o+\sin^21^o=1\)

\(\cos^22^o+\cos^288^o=\cos^22^o+\cos^2\left(90^o-2^o\right)=\cos^22^o+\sin^22^o=1\)

.......

\(\cos^244^o+\cos^246^o=\cos^244^o+\cos^2\left(90^o-44^o\right)=\cos^244^o+\sin^244^o=1\)

\(\cos^245^o=\left(\frac{\sqrt{2}}{2}\right)^2=\frac{1}{2}\)

=> \(A=1.44+\frac{1}{2}-\frac{1}{2}=44\)