Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{x}{y}=\frac{7}{4}\Rightarrow\frac{x}{7}=\frac{y}{4}=\frac{4x}{28}=\frac{5y}{20}\) Áp dụng TC DTSBN ta có :
\(\frac{4x}{28}=\frac{5y}{20}=\frac{4x-5y}{28-20}=\frac{72}{8}=9\)
=> x = 63 ; y = 36
\(\frac{x}{y}=\frac{-7}{4}\Rightarrow4x=-7y\Rightarrow4x+7y=0\)
Ta có: \(4x-5y=72\Rightarrow4x+7y-12y=72\)
Thay 4x+7y=0 vào đẳng thức,ta có:\(0-12y=72\Rightarrow12y=-72\Rightarrow y=-6\)
\(\Rightarrow x=\frac{-7\times-6}{4}=10.5\)
1. -2x=5y =>\(\frac{x}{y}=\frac{-5}{2}=>y=\frac{-2x}{5}\)
Thế y=\(\frac{-2x}{5}\) ta được:
x+\(\frac{-2x}{5}\)=30 \(\Rightarrow\frac{5x-2x}{5}=30\)
\(\Rightarrow3x=150\)\(\Rightarrow x=50\)
=>y=30-x=30-50=-20.
Vậy x=50; y=-20.
Những bài khác tương tự bạn nhé!
Ta có: \(\frac{x}{y}=\frac{-7}{4}\Rightarrow\frac{x}{-7}=\frac{y}{4}\)
Suy ra \(\frac{4x}{-28}=\frac{5y}{20}\)
Áp dụng tính chất dãy các tỉ số bằng nhau, ta có:
\(\frac{4x}{-28}=\frac{5y}{20}=\frac{4x-5y}{-28-20}=\frac{-3}{2}\)
\(\Rightarrow\hept{\begin{cases}x=\frac{-3}{2}.\left(-7\right)=\frac{21}{2}\\y=\frac{-3}{2}.4=-6\end{cases}}\)
Vậy \(x=\frac{21}{2}\) và y = -6
đặt \(\frac{x}{-3}=\frac{y}{8}=k\) \(\Rightarrow x=-3k;y=8k\)
\(x^2-y^2=-\frac{44}{5}\)\(\Leftrightarrow\left(-3k\right)^2-\left(8k\right)^2=9k^2-64k^2=-55k^2=\frac{-44}{5}\)
\(\Rightarrow k^2=\frac{4}{25}\Rightarrow k=\pm\frac{2}{5}\)
\(\Rightarrow\orbr{\begin{cases}x=\frac{-6}{5};y=\frac{16}{5}\\x=\frac{6}{5};y=\frac{-16}{5}\end{cases}}\)
Bài 1:
Giải:
Ta có: \(\frac{1+3y}{12}=\frac{1+7y}{4x}=\frac{1+1+3y+7y}{12+4x}=\frac{2+10y}{2\left(6+2x\right)}=\frac{2\left(1+5y\right)}{2\left(6+2x\right)}=\frac{1+5y}{6+2x}=\frac{1+5y}{5x}\)
+) Xét \(1+5y=0\Rightarrow y=\frac{-1}{5}\Rightarrow1+5y=0\) ( loại )
+) Xét \(1+5y\ne0\Rightarrow6+2x=5x\)
\(\Rightarrow5x-2x=6\)
\(\Rightarrow3x=6\)
\(\Rightarrow x=2\)
Mà \(\frac{1+3y}{12}=\frac{1+5y}{5x}\)
\(\Rightarrow\frac{1+3y}{12}=\frac{1+5y}{10}\)
\(\Rightarrow10\left(1+3y\right)=12\left(1+5y\right)\)
\(\Rightarrow10+30y=12+60y\)
\(\Rightarrow10-12=60y-30y\)
\(\Rightarrow-2=30y\)
\(\Rightarrow y=\frac{-1}{15}\)
Vậy \(x=2,y=\frac{-1}{15}\)
a )
Ta có :
\(\hept{\begin{cases}\frac{x}{5}=\frac{y}{6}\\\frac{y}{8}=\frac{z}{7}\end{cases}\Rightarrow\hept{\begin{cases}\frac{x}{20}=\frac{y}{24}\\\frac{y}{24}=\frac{z}{21}\end{cases}}}\)
và \(x+y-z=69\)
ADTCDTSBN , ta có :
\(\frac{x}{20}=\frac{y}{24}=\frac{z}{21}=\frac{x+y-z}{20+24-21}=\frac{69}{23}=3\)
\(\Rightarrow\hept{\begin{cases}\frac{x}{20}=3\\\frac{y}{24}=3\\\frac{z}{21}=3\end{cases}\Rightarrow\hept{\begin{cases}x=3.20=60\\y=3.24=72\\z=3.21=63\end{cases}}}\)
Vậy ...
b )
Ta có :
\(5y=72\Rightarrow y=\frac{72}{5}=14,4\)
\(\Rightarrow x=14,4.3:2=21,6\)
và \(3x+5y-7z=30\)
Thay vào làm tiếp :
c )
\(\frac{x-1}{2}=\frac{y+3}{4}=\frac{z-5}{6}\)
\(=\frac{3\left(x-1\right)}{6}=\frac{4\left(y+3\right)}{16}=\frac{5\left(z-5\right)}{30}\)
\(=\frac{3x-3}{6}=\frac{4y+12}{16}=\frac{5z-25}{30}\)
\(=\frac{5z-25-\left(3x-3\right)-\left(4y+12\right)}{30-6-16}\)( ADTCDTSBN )
\(=\frac{5z-25-3x+3-4y-12}{8}=\frac{5z-3x-4y-34}{8}\)
\(=\frac{50-34}{8}=\frac{16}{8}=2\)
\(\Rightarrow\hept{\begin{cases}\frac{x-1}{2}=2\\\frac{y+3}{4}=2\\\frac{z-5}{6}=2\end{cases}\Rightarrow\hept{\begin{cases}x-1=2.2=4\\y+3=2.4=8\\z-5=2.6=12\end{cases}\Rightarrow}\hept{\begin{cases}x=5\\y=5\\z=17\end{cases}}}\)
Vậy ...
Áp dụng tính chất dãy tỉ số bằng nhau
\(\frac{x}{5}=\frac{y}{7}=\frac{z}{9}=\frac{x-y+z}{5-7+9}=\frac{315}{7}=45\)
suy ra: x/5 = 45 => x = 225
y/7 = 45 => y = 315
z/9 = 45 => z = 405
Đặt :
\(\frac{x}{-4}=\frac{y}{7}=k\Leftrightarrow x=-4k;y=7k\)
=> \(-4x-5y=-4\cdot-4k-5\cdot7k=16k-35k=-19k=133\Leftrightarrow k=-7\)
=> x = -4 . -7 = 28
=> y = 7 . -7 = -49
1/
\(\frac{x}{y}=\frac{3}{4}\Rightarrow\frac{x}{3}=\frac{y}{4}=\frac{4x}{12}=\frac{5y}{20}=\frac{4x-5y}{-8}\) (1)
\(\frac{x}{3}=\frac{y}{4}=\frac{3x}{9}=\frac{4y}{16}=\frac{3x+4y}{25}\) (2)
Từ (1) và (2) \(\Rightarrow\frac{4x-5y}{-8}=\frac{3x+4y}{25}\Rightarrow\frac{4x-5y}{3x+4y}=\frac{-8}{25}\)
2/
\(M-N=3x\left(x-y\right)-\left(y-x\right)\left(y+x\right)=\)
\(=3x\left(x-y\right)+\left(x-y\right)\left(y+x\right)=\left(x-y\right)\left(4x+y\right)\)
Mà \(x-y\) chia hết cho 11 nên \(M-N\) chia hết cho 11
Ta có: \(\frac{x}{y}=\frac{7}{4}\Rightarrow\frac{x}{7}=\frac{y}{4}\)
Mà \(4x-5y=72\)
\(\Rightarrow\frac{x}{7}=\frac{y}{4}=\frac{4x-5y}{7.4-5.4}=\frac{72}{8}=9\)
\(\Rightarrow x=9.7=63\)
\(y=9.4=36\)
\(\Rightarrow\left(x-y\right)^2=\left(63-36\right)^2=27^2=729\)
=> 4x=7y thay vào 4x-5y=72 ta có 7y-5y=72
=>y=36 => x=63
=> (x+y)^2=729