K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Các câu hỏi dưới đây có thể giống với câu hỏi trên
NV
Nguyễn Việt Lâm
Giáo viên
8 tháng 4 2022
\(\dfrac{xyz}{\left(x+y\right)\left(y+z\right)\left(z+x\right)}\le\dfrac{xyz}{2\sqrt{xy}.2\sqrt{yz}.2\sqrt{zx}}=\dfrac{1}{8}\)
Dấu "=" xảy ra khi \(x=y=z\)
LV
10 tháng 6 2017
Áp dụng bđt côsi cho 3 số x,y,z không âm ta có:
\(\dfrac{x+y+z}{3}\ge\sqrt[3]{xyz}\)
Mà \(x+y+z=2017\)
\(\Rightarrow\dfrac{2017}{3}\ge\sqrt[3]{xyz}\)
\(\Leftrightarrow xyz\le\left(\dfrac{2017}{3}\right)^3\Leftrightarrow xyz\le303916256\)
Dấu "=" xảy ra khi \(x=y=z=\dfrac{2017}{3}\)
Vậy giá trị max của \(P=303916256\\\) khi \(x=y=z=\dfrac{2017}{3}\)
LV
10 tháng 6 2017
bạn xem lại đề xem \(x,y,z\) là số tự nhiên hay \(x,y,z>0\)
nếu 3 số đó dương thì làm cách của mình. nếu là 3 số tự nhiên thì không làm cách đó được
Biến đổi:
\(8B=8xyz[(xy+yz+xz)(x+y+z)-xyz]=8xyz(xy+yz+xz-xyz)\)
Áp dụng BĐT Am-Gm dạng \(ab\leq\left(\frac{a+b}{2}\right)^2\Rightarrow 8B\leq\left(\frac{xy+yz+xz+7xyz}{2}\right)^2\)
Bằng Am-Gm dễ dàng chứng minh \(xy+yz+xz\leq\frac{(x+y+z)^2}{3}=\frac{1}{3};xyz\leq\frac{1}{27}\)
Do đó: \(8B\leq\frac{64}{729}\Rightarrow B_{max}=\frac{8}{729}\) \(\Rightarrow 9^3k=\frac{8}{729}.9^3=8\)