K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 2 2018

Đáp án: C

ĐKXĐ:  x   ≠   0

Cách tìm giá trị của biến x để phân thức có giá trị nguyên cực hay, có đáp | Toán lớp 8

Để Cách tìm giá trị của biến x để phân thức có giá trị nguyên cực hay, có đáp | Toán lớp 8 nguyên ⇒ x là ước của -7 hay x ∈ {-7;-1;1;7}

Với các giá trị x = {-7;-1;1;7} thì phân thức Cách tìm giá trị của biến x để phân thức có giá trị nguyên cực hay, có đáp | Toán lớp 8 nhận giá trị nguyên

Vậy đáp án C là đáp án đúng

9 tháng 8 2018

Chọn đáp án C

Giá trị của biểu thức Q = x 2 - 6 x + 9 x 2 - 9 = x - 3 2 x - 3 x + 3 = x - 3 x + 3

Giá trị của Q tại x = 3 là (3-3)/(3+3) = 0 sai vì x = 3 phân thức đã cho không xác định.

11 tháng 12 2018

để A xác định

\(\Rightarrow\hept{\begin{cases}x+2\ne0\\x-2\ne0\\x^2\ne4\end{cases}}\Rightarrow x\ne\pm2\)

\(A=\frac{4}{x+2}+\frac{3}{x-2}-\frac{5x-6}{x^2-4}\)

\(A=\frac{4.x-8}{\left(x+2\right).\left(x-2\right)}+\frac{3.x+6}{\left(x-2\right).\left(x+2\right)}-\frac{5x-6}{\left(x-2\right).\left(x+2\right)}\)

\(A=\frac{4x-8+3x+6-5x+6}{\left(x+2\right).\left(x-2\right)}=\frac{2.\left(x+2\right)}{\left(x+2\right).\left(x-2\right)}=\frac{2}{x-2}\)

11 tháng 12 2018

\(\frac{4}{x+2}+\frac{3}{x-2}-\frac{5x-6}{x^2-4}=\frac{4}{x+2}+\frac{3}{x-2}-\frac{5x-6}{\left(x+2\right)\left(x-2\right)}\)

\(=\frac{4x-8}{\left(x+2\right)\left(x-2\right)}+\frac{3x+4}{\left(x-2\right)\left(x+2\right)}-\frac{5x-6}{\left(x-2\right)\left(x+2\right)}=\frac{4x-8+3x+4-5x+6}{\left(x+2\right)\left(x-2\right)}\)

\(=\frac{2x+2}{\left(x+2\right)\left(x-2\right)}=\frac{2x+2}{x^2-4}\)

C, \(x=4\Rightarrow A=\frac{2x+2}{x^2-4}=\frac{-6}{12}=\frac{-1}{2}\)

d, \(A\inℤ\Leftrightarrow2x+2⋮x^2-4\Leftrightarrow2x^2+2x-2x^2+8⋮x^2-4\Leftrightarrow2x+8⋮x^2-4\)

\(\Leftrightarrow2x^2+8x⋮x^2-4\Leftrightarrow16⋮x^2-4\)

\(x^2-4\inℕ\)

\(\Rightarrow x^2\in\left\{0;4;12\right\}\)

Thử lại thì 12 ko là số chính phương vậy x=0 hoặc x=2 thỏa mãn

mk học lớp 6 mong mn thông cảm nếu có sai sót

18 tháng 11 2021

\(1,\\ b,=\left(x-6\right)\left(x+6\right)\\ 3,\\ x^2-2x+1=25\\ \Leftrightarrow\left(x-1\right)^2-25=0\\ \Leftrightarrow\left(x-6\right)\left(x+4\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=6\\x=-4\end{matrix}\right.\)

16 tháng 4 2017

Đáp án: B

Điều kiện xác định của phân thức: x ≠ -3

Cách tìm giá trị của biến x để phân thức có giá trị nguyên cực hay, có đáp | Toán lớp 8

Để Cách tìm giá trị của biến x để phân thức có giá trị nguyên cực hay, có đáp | Toán lớp 8 nguyên ⇒ x + 3 là ước của -5 hay x + 3 ∈ {-5;-1;1;5}

Với x + 3 = -5 ⇔ x = - 8 (thỏa mãn ĐKXĐ)

Với x + 3 = -1 ⇔ x = - 4 (thỏa mãn ĐKXĐ)

Với x + 3 = 1 ⇔ x = -2 (thỏa mãn ĐKXĐ)

Với x + 3 = 5 ⇔ x = 2 (thỏa mãn ĐKXĐ)

Vậy đáp án B là đáp án đúng 

21 tháng 12 2018

1.a)\(\frac{x^3}{x^2-4}-\frac{x}{x-2}-\frac{2}{x+2}\)

\(=\frac{x^3}{\left(x+2\right)\left(x-2\right)}-\frac{x}{x-2}-\frac{2}{x+2}\)

Để biểu thức được xác định thì:\(\left(x+2\right)\left(x-2\right)\ne0\)\(\Rightarrow x\ne\pm2\)

                                                      \(\left(x+2\right)\ne0\Rightarrow x\ne-2\)

                                                      \(\left(x-2\right)\ne0\Rightarrow x\ne2\)

                         Vậy để biểu thức xác định thì : \(x\ne\pm2\)

b) để C=0 thì ....

21 tháng 12 2018

1, c , bn Nguyễn Hữu Triết chưa lm xong 

ta có : \(/x-5/=2\)

\(\Rightarrow\orbr{\begin{cases}x-5=2\\x-5=-2\end{cases}}\Rightarrow\orbr{\begin{cases}x=7\\x=3\end{cases}}\)

thay x = 7  vào biểu thứcC

\(\Rightarrow C=\frac{4.7^2\left(2-7\right)}{\left(7-3\right)\left(2+7\right)}=\frac{-988}{36}=\frac{-247}{9}\)KL :>...

thay x = 3 vào C 

\(\Rightarrow C=\frac{4.3^2\left(2-3\right)}{\left(3-3\right)\left(3+7\right)}\)

=> ko tìm đc giá trị C tại x = 3