K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 7 2016

A= x^2+2x +5

   =x^2+2x+1+4

   =(x+1)2 +4

=>Amin=4

19 tháng 7 2016

\(A=x^2+2x+5=\left(x^2+2x+1\right)+4=\left(x^2+2.x.1+1^2\right)+4\)

\(=\left(x+1\right)^2+4\)

\(\left(x+1\right)^2\ge0=>\left(x+1\right)^2+4\ge4\) (với mọi x)

Dấu "=" xảy ra \(< =>\left(x+1\right)^2=0< =>x=-1\)

Vậy minA=4 khi x=-1

27 tháng 7 2017

\(P=\frac{x^2-2x+1989}{x^2}\)

\(\Leftrightarrow Px^2=x^2-2x+1989\)

\(\Leftrightarrow x^2\left(1-P\right)-2x+1989=0\)

\(\Delta=4-4\left(1-P\right)1989\ge0\)

\(\Leftrightarrow P\ge\frac{1988}{1989}\)có GTNN là \(\frac{1988}{1989}\)

Dấu "=" xảy ra \(\Leftrightarrow x=1989\)

Vậy \(P_{min}=\frac{1988}{1989}\) tại x = 1989

31 tháng 10 2015

1.ta có: 7x-2x^2=-2(x^2-7/2x)

                       =-2(x^2-2*7/4x+49/16-49/16)

                       =-2(x-7/4)^2+49/8 <=49/8

Dấu bằng xáy ra <=> x=7/4

Vậy max=49/8 <=> x=7/4

 

18 tháng 12 2016

\(T=x^2+2xy+2y^2-2x-2y-2\)

\(=\left(x^2+2xy+y^2-2x-2y+1\right)+y^2-3\)

\(=\left(x+y-1\right)^2+y^2-3\ge-3\)

Đẳng thức xảy ra khi \(\begin{cases}\left(x+y-1\right)^2=0\\y^2=0\end{cases}\)\(\Rightarrow\begin{cases}x+y-1=0\\y=0\end{cases}\)

\(\Rightarrow\begin{cases}x+0-1=0\\y=0\end{cases}\)\(\Rightarrow\begin{cases}x=1\\y=0\end{cases}\)

Vậy \(Min_T=-3\) khi \(\begin{cases}x=1\\y=0\end{cases}\)

18 tháng 12 2016

Cảm ơn anh , anh đã giúp em đó Nguyễn Huy Thắng

6 tháng 8 2017

2.E = 4x^2 -  12x

= ( 4x^2 - 12x + 9 ) -9

=(2x-3)^2 - 9 >= -9 

<=> E >= -18 

Dấu "=" xảy ra <=> 2x-3 = 0 <=> x=3/2

Vậy GTNN của E là E = -18 <=> x =3/2

6 tháng 8 2017

Ta có : E = 2x2 - 6x 

=> E = 2(x2 - 6x + 9 - 9)

=> E = 2(x2 - 6x + 9) - 18

=> E = 2(x - 3)2 - 18

Mà ;  2(x - 3)2 \(\ge0\forall x\)

Nên: E = 2(x - 3)2 - 18 \(\ge-18\forall x\)

Vậy Emin = -18 khi x = 3

4 tháng 9 2017

ĐK : \(x\ne-2\)

ta có \(A=\frac{x^2+2x+3}{\left(x+2\right)^2}=\frac{3x^2+6x+9}{3\left(x+2\right)^2}=\frac{2x^2+8x+8+x^2-2x+1}{3\left(x+2\right)^2}\)

             \(=\frac{2\left(x+2\right)^2+\left(x-1\right)^2}{3\left(x+2\right)^2}=\frac{2}{3}+\frac{\left(x-1\right)^2}{3\left(x+2\right)^2}\) 

vì (x-1)^2 >=0=> \(\frac{\left(x-1\right)^2}{3\left(x+2\right)^2}>=0\)

=> \(A>=\frac{2}{3}\)

dấu = xảy ra <=> x=1 ( thỏa mãn ĐKXĐ)

7 tháng 7 2017

Giá trị nhỏ nhất là 1/2 nhé bạn.

8 tháng 11 2015

\(M=\left(x^2+4x+4\right)+1=\left(x+2\right)^2+1\ge0+1=1\)

\(Mmin=1\) khi x+2 = 0 => x = -2

8 tháng 11 2015

M=x2 +4x +5

=>M=x(x+4)+5

Ta có:

x(x+4) lớn hơn hoặc bằng 0

=>x(x+4)+5 lớn hơn hoặc bằng 5

=>M lớn hơn hoặc bằng 5

Dấu "=" xảy ra <=> x = 0 hoặc x+4=0 => x= - 4

Vậy M đạt GTNN là 5 <=> x=0 hoặc x= -4