K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Ta có: \(\left|97\dfrac{2}{3}-123\dfrac{3}{5}+97\dfrac{2}{5}-125\dfrac{1}{3}\right|\)

\(=\left|97\left(\dfrac{2}{3}+\dfrac{2}{5}\right)-125\cdot\left(\dfrac{3}{5}+\dfrac{1}{3}\right)\right|\)

\(=\left|194\cdot\dfrac{8}{15}-125\cdot\dfrac{14}{15}\right|\)

\(=\left|\dfrac{-66}{5}\right|=\dfrac{66}{5}\)

Ta có: \(\left|97\dfrac{2}{3}-125\dfrac{3}{5}\right|+97\dfrac{2}{5}-125\dfrac{1}{3}\)

\(=\left|97+\dfrac{2}{3}-125-\dfrac{3}{5}\right|+97+\dfrac{2}{5}-125-\dfrac{1}{3}\)

\(=\left|-28+\dfrac{1}{15}\right|-28+\dfrac{1}{15}\)

\(=\left|\dfrac{1}{15}-28\right|-28+\dfrac{1}{15}\)

\(=28-\dfrac{1}{15}-28+\dfrac{1}{15}\)

\(=0\)

Ta có: \(M=\dfrac{\dfrac{1}{99}+\dfrac{2}{98}+\dfrac{3}{97}+\dfrac{4}{96}+...+\dfrac{97}{3}+\dfrac{98}{2}+\dfrac{99}{1}}{\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+\dfrac{1}{5}+\dfrac{1}{6}+...+\dfrac{1}{100}}\)

\(=\dfrac{\left(1+\dfrac{1}{99}\right)+\left(1+\dfrac{2}{98}\right)+\left(1+\dfrac{3}{97}\right)+\left(1+\dfrac{4}{96}\right)+...+\left(1+\dfrac{98}{2}\right)+1}{\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+\dfrac{1}{5}+\dfrac{1}{6}+...+\dfrac{1}{100}}\)

\(=\dfrac{\dfrac{100}{99}+\dfrac{100}{98}+\dfrac{100}{97}+...+\dfrac{100}{1}+\dfrac{100}{2}}{\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+\dfrac{1}{5}+\dfrac{1}{6}+...+\dfrac{1}{100}}\)

=100

Ta có: \(N=\dfrac{92-\dfrac{1}{9}-\dfrac{2}{10}-\dfrac{3}{11}-...-\dfrac{90}{98}-\dfrac{91}{99}-\dfrac{92}{100}}{\dfrac{1}{45}+\dfrac{1}{50}+\dfrac{1}{55}+...+\dfrac{1}{495}+\dfrac{1}{500}}\)

\(=\dfrac{\left(1-\dfrac{1}{9}\right)+\left(1-\dfrac{2}{10}\right)+\left(1-\dfrac{3}{11}\right)+...+\left(1-\dfrac{90}{98}\right)+\left(1-\dfrac{91}{99}\right)+\left(1-\dfrac{92}{100}\right)}{\dfrac{1}{5}\left(\dfrac{1}{9}+\dfrac{1}{10}+\dfrac{1}{11}+...+\dfrac{1}{99}+\dfrac{1}{100}\right)}\)

\(=\dfrac{\dfrac{8}{9}+\dfrac{8}{10}+\dfrac{8}{11}+...+\dfrac{8}{99}+\dfrac{8}{100}}{\dfrac{1}{5}\left(\dfrac{1}{9}+\dfrac{1}{10}+\dfrac{1}{11}+...+\dfrac{1}{99}+\dfrac{1}{100}\right)}\)

\(=\dfrac{8}{\dfrac{1}{5}}=40\)

\(\Leftrightarrow\dfrac{M}{N}=\dfrac{100}{40}=\dfrac{5}{2}\)

25 tháng 3
Giải:

a) S = 1.2 + 2.3 + 3.4 + ... + 99.100

S có thể được viết lại thành:

S = 1(2 - 0) + 2(3 - 1) + 3(4 - 2) + ... + 99(100 - 98)

= 1.2 - 0 + 2.3 - 1 + 3.4 - 2 + ... + 99.100 - 98

= (1.2 + 2.3 + 3.4 + ... + 99.100) - (0 + 1 + 2 + ... + 98)

Để tính tổng 1.2 + 2.3 + 3.4 + ... + 99.100, ta sử dụng công thức:

S = n(n+1)(2n+1)/6

Với n = 99, ta có:

S = 99.100.199/6 = 331650

Tính tổng 0 + 1 + 2 + ... + 98, ta sử dụng công thức:

S = n(n+1)/2

Với n = 98, ta có:

S = 98.99/2 = 4851

Do đó, S = 331650 - 4851 = 326799

b) B = 4924.12517.28−530.749.45529.162.748

B có thể được viết lại thành:

B = (4924.12517.28) / (530.749.45529.162.748)

B = (4924 / 530) . (12517 / 749) . (28 / 45529) . (162 / 162) . (748 / 748)

B = 9.17.28/45529 = 2^2 . 3^2 . 17 / 45529

B = 108 / 45529

c) C = (13+132+133+134).35+(135+136+137+138).39+...+(1397+1398+1399+13100).3101

C = (13(1 + 13 + 13^2 + 13^3)) . 3^5 + (13^5(1 + 13 + 13^2 + 13^3)) . 3^9 + ... + (13^97(1 + 13 + 13^2 + 13^3)) . 3^101

C = (1 + 13 + 13^2 + 13^3) . (13^5 . 3^5 + 13^9 . 3^9 + ... + 13^97 . 3^101)

C = 80 . (13^5 . 3^5 + 13^9 . 3^9 + ... + 13^97 . 3^101)

C = 80 . (13^5 . 3^4 . 3 + 13^9 . 3^8 . 3 + ... + 13^97 . 3^96 . 3)

C = 80 . (13^6 . 3^5 + 13^10 . 3^9 + ... + 13^98 . 3^97)

C = 80 . 3^5 (13^6 + 13^10 + ... + 13^98)

d) D = 3 - 3^2 + 3^3 - 3^4 + ... + 3^2017 - 3^2018

D = (3 - 3^2) + (3^3 - 3^4) + ... + (3^

\(\Leftrightarrow\left|5x+\dfrac{3}{4}\right|=\dfrac{13}{4}\)

\(\Leftrightarrow\left[{}\begin{matrix}5x+\dfrac{3}{4}=\dfrac{13}{4}\\5x+\dfrac{3}{4}=-\dfrac{13}{4}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}5x=\dfrac{5}{2}\\5x=-4\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{1}{2}\\x=-\dfrac{4}{5}\end{matrix}\right.\)

14 tháng 10

 

????

 

1 tháng 11 2023

a) \(\dfrac{2}{3}x-\dfrac{1}{2}x=\left(-\dfrac{7}{12}\right)\cdot1\dfrac{2}{5}\)

\(\Rightarrow\dfrac{1}{6}x=\left(-\dfrac{7}{12}\right)\cdot\dfrac{7}{5}\)

\(\Rightarrow\dfrac{1}{6}x=-\dfrac{49}{60}\)

\(\Rightarrow x=-\dfrac{49}{60}:\dfrac{1}{6}\)

\(\Rightarrow x=-\dfrac{49}{10}\) 

b) \(\left(\dfrac{1}{5}-\dfrac{3}{2}x\right)^2=\dfrac{9}{4}\)

\(\Rightarrow\left(\dfrac{1}{5}-\dfrac{3}{2}x\right)^2=\left(\pm\dfrac{3}{2}\right)^2\)

+) \(\dfrac{1}{5}-\dfrac{3}{2}x=\dfrac{3}{2}\)

\(\Rightarrow\dfrac{3}{2}x=\dfrac{1}{5}-\dfrac{3}{2}\)

\(\Rightarrow\dfrac{3}{2}x=-\dfrac{13}{10}\)

\(\Rightarrow x=-\dfrac{13}{10}:\dfrac{3}{2}\)

\(\Rightarrow x=-\dfrac{13}{15}\)

+) \(\left(1,25-\dfrac{4}{5}x\right)^3=-125\)

\(\Rightarrow\left(\dfrac{5}{4}-\dfrac{4}{5}x\right)^3=\left(-5\right)^3\)

\(\Rightarrow\dfrac{5}{4}-\dfrac{4}{5}x=-5\)

\(\Rightarrow\dfrac{4}{5}x=\dfrac{5}{4}+5\)

\(\Rightarrow\dfrac{4}{5}x=\dfrac{25}{4}\)

\(\Rightarrow x=\dfrac{25}{4}:\dfrac{4}{5}\)

\(\Rightarrow x=\dfrac{125}{16}\)

1 tháng 11 2023

a, \(\dfrac{2}{3}\)\(x\) - \(\dfrac{1}{2}\)\(x\) = (- \(\dfrac{7}{12}\)). 1\(\dfrac{2}{5}\)

    \(x\).(\(\dfrac{2}{3}\) - \(\dfrac{1}{2}\)) = (- \(\dfrac{7}{12}\)) . \(\dfrac{7}{5}\)

    \(x\)\(\dfrac{1}{6}\) = - \(\dfrac{49}{60}\)

    \(x\)      = - \(\dfrac{49}{60}\).6

    \(x\)      = -\(\dfrac{49}{10}\)

10 tháng 9 2023

\(a,\dfrac{5^{16}\cdot27^7}{125^5\cdot9^{11}}=\dfrac{5^{16}\cdot\left(3^3\right)^7}{\left(5^3\right)^5\cdot\left(3^2\right)^{11}}\)

\(=\dfrac{5^{16}\cdot3^{21}}{5^{15}\cdot3^{22}}=\dfrac{5}{3}\)

\(b,\left(-0,2\right)^2\cdot5-\dfrac{2^{13}\cdot27^3}{4^6\cdot9^5}\)

\(=0,04\cdot5-\dfrac{2^{13}\cdot\left(3^3\right)^3}{\left(2^2\right)^6\cdot\left(3^2\right)^5}\)

\(=0,2-\dfrac{2^{13}\cdot3^9}{2^{12}\cdot3^{10}}\)

\(=0,2-\dfrac{2}{3}\)

\(=-\dfrac{7}{15}\)

\(c,\dfrac{5^6+2^2\cdot25^3+2^3\cdot125^2}{26\cdot5^6}\)

\(=\dfrac{5^6+2^2\cdot\left(5^2\right)^3+2^3\cdot\left(5^3\right)^2}{5^6\cdot26}\)

\(=\dfrac{5^6+4\cdot5^6+8\cdot5^6}{5^6\cdot26}\)

\(=\dfrac{5^6\left(1+4+8\right)}{5^6\cdot26}\)

\(=\dfrac{13}{26}\)

\(=\dfrac{1}{2}\)

#\(Toru\)

10 tháng 9 2023

\(a,\dfrac{5^{16}.27^7}{125^5.9^{11}}=\dfrac{\left(5^2\right)^8.9^7.3^7}{25^5.5^5.9^{11}}\\ =\dfrac{25^8.9^7.\left(3^2\right)^3.3}{25^5.\left(5^2\right)^2.5.9^{11}}=\dfrac{25^8.9^7.9^3.3}{25^5.25^2.5.9^{11}}\\ =\dfrac{25^8.9^{10}.3}{25^7.5.9^{11}}=\dfrac{25^7.9^{10}.25.3}{25^7.9^{10}.5.9}\\ =\dfrac{25.3}{5.9}=\dfrac{5.5.3}{5.3.3}=\dfrac{5}{3}\)

30 tháng 11 2017

\(A=\left(\dfrac{1}{125}-\dfrac{1}{1^3}\right)\left(\dfrac{1}{125}-\dfrac{1}{2^3}\right)\left(\dfrac{1}{125}-\dfrac{1}{3^3}\right)....\left(\dfrac{1}{125}-\dfrac{1}{25^3}\right)\)

\(A=\left(\dfrac{1}{125}-\dfrac{1}{1^3}\right)\left(\dfrac{1}{125}-\dfrac{1}{2^3}\right)....\left(\dfrac{1}{125}-\dfrac{1}{5^3}\right).....\left(\dfrac{1}{125}-\dfrac{1}{25^3}\right)\)

\(A=\left(\dfrac{1}{125}-\dfrac{1}{1^3}\right)\left(\dfrac{1}{125}-\dfrac{1}{2^3}\right)....0......\left(\dfrac{1}{125}-\dfrac{1}{25^3}\right)\)

\(A=0\)

30 tháng 6 2017

\(=\dfrac{\dfrac{1}{9}-\dfrac{1}{7}-\dfrac{1}{11}}{4\left(\dfrac{1}{9}-\dfrac{1}{7}-\dfrac{1}{11}\right)}+\dfrac{3\left(\dfrac{1}{5}-\dfrac{1}{25}-\dfrac{1}{125}-\dfrac{1}{625}\right)}{4\left(\dfrac{1}{5}-\dfrac{1}{25}-\dfrac{1}{125}-\dfrac{1}{625}\right)}\)

\(=\dfrac{1}{4}+\dfrac{3}{4}=\dfrac{4}{4}=1\)