Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Để chứng minh rằng 2 tia phân giác 2 góc đối đỉnh là 2 tia đối nhau, chúng ta cần sử dụng một số khái niệm và định lý trong hình học. Dưới đây là cách chứng minh:
Giả sử chúng ta có hai tia AB và AC, và chúng phân giác hai góc đối đỉnh, tức là góc BAC và góc CAD. Chúng ta cần chứng minh rằng hai tia AB và AC là hai tia đối nhau.
Để chứng minh điều này, ta sẽ sử dụng Định lý Tia Phân Giác (Bisector Theorem) và Định lý Tia Tiếp Tuyến (Alternate Segment Theorem) như sau:
Bước 1: Vẽ đường thẳng đi qua điểm A và song song với tia BC (đường thẳng đó gọi là đường thẳng d).
Bước 2: Do AB là tia phân giác góc BAC, nên theo Định lý Tia Phân Giác, ta có: AB/BD = AC/CD
Bước 3: Do AC là tia phân giác góc CAD, nên theo Định lý Tia Phân Giác, ta có: AC/CD = AB/BD
Bước 4: Từ Bước 2 và Bước 3, ta có: AB/BD = AC/CD = AB/BD Bước 5: Từ Bước 4, ta suy ra AB = AC.
Vậy, chúng ta đã chứng minh rằng hai tia AB và AC là hai tia đối nhau. Hy vọng cách chứng minh trên giúp bạn hiểu và giải đúng bài tập.
Để chứng minh rằng 2 tia phân giác 2 góc đối đỉnh là 2 tia đối nhau, chúng ta cần sử dụng một số khái niệm và định lý trong hình học. Dưới đây là cách chứng minh:
Giả sử chúng ta có hai tia AB và AC, và chúng phân giác hai góc đối đỉnh, tức là góc BAC và góc CAD. Chúng ta cần chứng minh rằng hai tia AB và AC là hai tia đối nhau.
Để chứng minh điều này, ta sẽ sử dụng Định lý Tia Phân Giác (Bisector Theorem) và Định lý Tia Tiếp Tuyến (Alternate Segment Theorem) như sau:
Bước 1: Vẽ đường thẳng đi qua điểm A và song song với tia BC (đường thẳng đó gọi là đường thẳng d).
Bước 2: Do AB là tia phân giác góc BAC, nên theo Định lý Tia Phân Giác, ta có: AB/BD = AC/CD
Bước 3: Do AC là tia phân giác góc CAD, nên theo Định lý Tia Phân Giác, ta có: AC/CD = AB/BD
Bước 4: Từ Bước 2 và Bước 3, ta có: AB/BD = AC/CD = AB/BD Bước 5: Từ Bước 4, ta suy ra AB = AC.
Vậy, chúng ta đã chứng minh rằng hai tia AB và AC là hai tia đối nhau. Hy vọng cách chứng minh trên giúp bạn hiểu và giải đúng bài tập.
Lời giải:
a.
$\frac{a}{b}< \frac{c}{d}\Rightarrow \frac{a}{b}-\frac{c}{d}<0$
$\Rightarrow \frac{ad-bc}{bd}< 0$
$\Rightarrow ad-bc<0$ (do $bd>0$)
$\Rightarrow ad< bc$ (đpcm)
b.
$\frac{a}{b}-\frac{a+c}{b+d}=\frac{a(b+d)-b(a+c)}{b(b+d)}=\frac{ad-bc}{b(b+d)}<0$ do $ad-bc<0$ và $b(b+d)>0$
$\Rightarrow \frac{a}{b}< \frac{a+c}{b+d}$
--------
$\frac{a+c}{b+d}-\frac{c}{d}=\frac{d(a+c)-c(b+d)}{d(b+d)}=\frac{ad-bc}{d(b+d)}<0$ do $ad-bc<0$ và $d(b+d)>0$
$\Rightarrow \frac{a+c}{b+d}< \frac{c}{d}$
Ta có đpcm.
Ví dụ : Tìm tập hợp các ước của 24
Ư(24) = {1 ; 2 ; 3 ; 4 ; 6 ; 8 ; 12 ; 24 }
Ta có thể tìm các ước của a bằng cách lần lượt chia a cho
các số tự nhiên từ 1 đến a để xét xem a chia hết cho những
số nào ,khi đó các số ấy là ước của a
Ta có:M là trung điểm của BC=>BM=MC
Mà IM=\(\frac{BM}{2}\)(I là trung điểm của BM)
=>IM\(=\frac{MC}{2}\)(1)
Vì IA=IE(gt)
=>CI là đường trung tuyến ứng với cạnh AE của \(\Delta AEC\)(2)
Từ (1),(2)=>M là giao điềm của 3 đường trung tuyến của \(\Delta AEC\)
Vì N là trung điểm của EC(gt)
=>AN là đường trung tuyến ứng với cạnh EC của \(\Delta AEC\)
Xét \(\Delta AEC\)có:
AN là đường trung tuyến ứng với cạnh EC
M là giao điểm của 3 đường trung tuyến
=>A,M,N thẳng hàng
Mình ko biết vẽ hình ở đâu nên ko vẽ mà chỉ trình bày thôi.
Bài giải
*Ta có:
+ M là td của BC (gt) => MB=MC(t/c)
+ I là td của BM (gt) => IM= IB(t/c)
mà MB=MC(cmt) => IM=IB=1/2 MC
=> M là trọng tâm ( t/c trọng tâm )
*Xét tam giác AEC có :
I là td của AE (gt) =>CI là trung tuyến
N là td của EC (gt) =>AN là trung tuyến
mà M là trọng tâm (cmt) => M thuộc AN
=> A,M,N thẳng hàng (dpcm)
a, Vì a//b và a⊥AB nên b⊥AB
b, Vì a//b nên \(\widehat{CDB}=180^0-\widehat{ACD}=60^0\) (trong cùng phía)
Vì a//b nên \(\widehat{CDB}=\widehat{aCD}=60^0\) (so le trong)
dễ mà
a.a//b,a vuông góc với AB
=>b vuông góc với AB
b.Tính CDB bằng cách dựa vào tc góc trong cùng phía
tính aCD bằng cách dựa vào tc kề bù
\(\dfrac{x-10}{30}+\dfrac{x-14}{43}+\dfrac{x-5}{95}+\dfrac{x-148}{8}=0\\ \Rightarrow\left(\dfrac{x-10}{30}-3\right)+\left(\dfrac{x-14}{43}-2\right)+\left(\dfrac{x-5}{95}-1\right)+\left(\dfrac{x-148}{8}+3\right)=0\\ \Rightarrow\dfrac{x-100}{30}+\dfrac{x-100}{43}+\dfrac{x-100}{95}+\dfrac{x-100}{8}=0\\ \Rightarrow\left(x-100\right)\left(\dfrac{1}{30}+\dfrac{1}{43}+\dfrac{1}{95}+\dfrac{1}{8}\right)=0\\ \Rightarrow x-100=0\\ \Rightarrow x=100\)