K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 10 2018

-2x + 3 > 0 ⇔ -2x > -3 ⇔ x < 3/2

Biểu diễn tập nghiệm trên trục số:

Giải bài tập Toán 10 | Giải Toán lớp 10

Nhị thức f(x) = -2x + 3 có giá trị:

Trái dấu với hệ số của x khi x < 3/2

Cùng dấu với hệ số của x khi x > 3/2

HQ
Hà Quang Minh
Giáo viên
26 tháng 9 2023

a) Dựa vào đồ thị ta thấy hàm số đã cho vô nghiệm

          Biệt thức \(\Delta  = {2^2} - 4.\left( { - 1} \right).\left( { - 2} \right) =  - 4 < 0\)

          Ta thấy hệ số của \({x^2}\) là \( - 1 < 0\)

          Đồ thị nằm dưới trục hoành với mọi x

Nên \(f\left( x \right)\) cùng dấu với hệ số của \({x^2}\) với \(\forall x \in \mathbb{R}\)

b) Dựa vào đồ thị ta thấy hàm số đã cho có nghiệm kép \({x_1} = {x_2} = 1\)

Biệt thức \(\Delta  = {2^2} - 4.\left( { - 1} \right).\left( { - 1} \right) = 0\)

          Ta thấy hệ số của \({x^2}\) là \( - 1 < 0\)

          Đồ thị nằm dưới trục hoành với mọi x

Nên \(f\left( x \right)\) cùng dấu với hệ số của \({x^2}\) với \(\forall x \in \mathbb{R}\)

c) Dựa vào đồ thị ta thấy hàm số đã cho có hai nghiệm phân biệt  \({x_1} =  - 1;{x_2} = 3\)

Biệt thức \(\Delta  = {2^2} - 4.\left( { - 1} \right).3 = 16 > 0\)

          Ta thấy hệ số của \({x^2}\) là \( - 1 < 0\)

Đồ thị nằm dưới trục hoành khi  \(x \in \left( { - \infty , - 1} \right) \cup \left( {3, + \infty } \right)\)

Đồ thị nằm trên trục hoành với mọi \(x \in \left( { - 1,3} \right)\)

Nên \(f\left( x \right)\) cùng dấu với hệ số của \({x^2}\) khi \(x \in \left( { - \infty , - 1} \right) \cup \left( {3, + \infty } \right)\)

d) Dựa vào đồ thị ta thấy hàm số bậc hai đã cho vô nghiệm

Biệt thức \(\Delta  = {6^2} - 4.1.10 =  - 4 < 0\)

          Ta thấy hệ số của \({x^2}\) là \(1 > 0\)

Đồ thị nằm trên trục hoành với mọi \(x\)

Nên \(f\left( x \right)\) cùng dấu với hệ số của \({x^2}\) với mọi \(x \in \mathbb{R}\)

e) Dựa vào đồ thị ta thấy hàm số đã cho có nghiệm kép \({x_1} = {x_2} =  - 3\)

Biệt thức \(\Delta  = {6^2} - 4.1.9 = 0\)

          Ta thấy hệ số của \({x^2}\) là \(1 > 0\)

          Đồ thị nằm trên trục hoành với mọi x

Nên \(f\left( x \right)\) cùng dấu với hệ số của \({x^2}\) với mọi \(x \in \mathbb{R}\)

g) ) Dựa vào đồ thị ta thấy hàm số đã cho có hai nghiệm phân biệt  \({x_1} =  - 4;{x_2} =  - 2\)

Biệt thức \(\Delta  = {6^2} - 4.1.8 = 4 > 0\)

          Ta thấy hệ số của \({x^2}\) là \(1 > 0\)

Đồ thị nằm trên trục hoành khi  \(x \in \left( { - \infty , - 4} \right) \cup \left( { - 2, + \infty } \right)\)

Đồ thị nằm dưới trục hoành với mọi \(x \in \left( { - 4, - 2} \right)\)

Nên \(f\left( x \right)\) cùng dấu với hệ số của \({x^2}\) khi \(x \in \left( { - \infty , - 4} \right) \cup \left( { - 2, + \infty } \right)\)

30 tháng 11 2023

loading...  loading...  

I.ĐẠI SỐ CHƯƠNG 4. BẤT ĐẲNG THỨC. BẤT PHƯƠNG TRÌNH 1. Bất phương trình Khái niệm bất phương trình. Nghiệm của bất phương trình. Bất phương trình tương đương. Phép biến đổi tương đương các bất phương trình. 2. Dấu của một nhị thức bậc nhất Dấu của một nhị thức bậc nhất. Hệ bất phương trình bậc nhất một ẩn. 3. Dấu của tam thức bậc hai Dấu của tam thức bậc...
Đọc tiếp
I.ĐẠI SỐ CHƯƠNG 4. BẤT ĐẲNG THỨC. BẤT PHƯƠNG TRÌNH 1. Bất phương trình Khái niệm bất phương trình. Nghiệm của bất phương trình. Bất phương trình tương đương. Phép biến đổi tương đương các bất phương trình. 2. Dấu của một nhị thức bậc nhất Dấu của một nhị thức bậc nhất. Hệ bất phương trình bậc nhất một ẩn. 3. Dấu của tam thức bậc hai Dấu của tam thức bậc hai. Bất phương trình bậc hai. Bài tập. 1. Xét dấu biểu thức f(x) = (2x - 1)(5 -x)(x - 7). g(x)= [1/(3-x)]-[1/(3+x)] h(x) = -3x2 + 2x – 7 k(x) = x2 - 8x + 15 2. Giải bất phương trình a) [(5-x)(x-7)]/x-1 > 0 b) –x2 + 6x - 9 > 0; c) -12x2 + 3x + 1 < 0. g) (2x - 8)(x2 - 4x + 3) > 0 h) k) l). (1 – x )( x2 + x – 6 ) > 0 m). 3. Giải bất phương trình a/ b/ c/ d/ e/ 4) Giải hệ bất phương trình sau a) . b) . c) d) 5) Với giá trị nào của m, phương trình sau có nghiệm? a) x2+ (3 - m)x + 3 - 2m = 0. b) 6) Cho phương trình : Với giá nào của m thì : a) Phương trình vô nghiệm b) Phương trình có các nghiệm trái dấu 7) Tìm m để bpt sau có tập nghiệm là R: a) b) 8) Xác định giá trị tham số m để phương trình sau vô nghiệm: x2 – 2 (m – 1 ) x – m2 – 3m + 1 = 0. 9) Cho f (x ) = ( m + 1 ) x – 2 ( m +1) x – 1 a) Tìm m để phương trình f (x ) = 0 có nghiệm b). Tìm m để f (x) 0 ,
0
HQ
Hà Quang Minh
Giáo viên
24 tháng 9 2023

Bước 1: Vẽ đường thẳng \(d_1: y-2x=2\) đi qua (0;2) và (-1;0). 

Lấy điểm O(0;0) không thuộc \(d_1\). Vì 0-2.0=0<2 nên O thuộc miền nghiệm

Miền nghiệm của BPT \(y - 2x \le 2\) là nửa mp bờ \(d_1\), chứa điểm O.

Bước 2: Vẽ đường thẳng \(d_2: y=4\) đi qua (0;4) và (1;4). 

Lấy điểm O(0;0) không thuộc \(d_2\). Vì 0<4 nên O thuộc miền nghiệm.

Miền nghiệm của BPT \(y \le 4\) là nửa mp bờ \(d_2\), chứa điểm O.

Bước 3: Vẽ đường thẳng \(d_3: x=5\) đi qua (5;0) và (5;1). 

Lấy điểm O(0;0) không thuộc \(d_3\). Vì 0<5 nên O thuộc miền nghiệm

Miền nghiệm của BPT \(x \le 5\) là nửa mp bờ \(d_3\), chứa điểm O.

Bước 4: Vẽ đường thẳng \(d_4: x + y = - 1\) đi qua (-1;0) và (0;-1). 

Lấy điểm O(0;0) không thuộc \(d_4\). Vì 0+0=0>-1 nên O thuộc miền nghiệm.

Miền nghiệm của BPT \(x + y \ge  - 1\) là nửa mp bờ \(d_4\), chứa điểm O.

 

Miền biểu diễn nghiệm của hệ bất phương trình là miền tứ giác ABCD với

A(1;4); B(5;4), C(5;-6); D(-1;0).

Giá trị F tại các điểm A, B, C, D lần lượt là:

\(F\left( {1;4} \right) =  - 1 - 4 =  - 5\)

\(F\left( {5;4} \right) =  - 5 - 4 =  - 9\)

\(F\left( {5;-6} \right) =  - 5 - (-6) =  1\)

\(F\left( { - 1;0} \right) =  - \left( { - 1} \right) - 0 = 1\)

Vậy giá trị lớn nhất của biểu thức F(x;y) là 1 và giá trị nhỏ nhất của biểu thức F(x;y) là -9.

29 tháng 8 2019

a) Ta có: 2. (-2) ≤ 3 nên -2 có là nghiệm của bất phương trình

+) Giải bài tập Toán 10 | Giải Toán lớp 10 không là nghiệm của bất phương trình ,

+) 2π > 3 nên π không là nghiệm của bất phương trình.

+) Giải bài tập Toán 10 | Giải Toán lớp 10 nên √10 không là nghiệm của bất phương trình,

Các số là nghiệm của bất phương trình trên là: -2;

Các số không là nghiệm của bất phương trình trên là: Giải bài tập Toán 10 | Giải Toán lớp 10; π; √10

b)2x ≤ 3 ⇔ x ≤ 3/2

Biểu diễn tập nghiệm trên trục số là:

Giải bài tập Toán 10 | Giải Toán lớp 10

13 tháng 4 2017

a)

f(x) giao trục tại hai Điểm có hoành độ x1=-4; x2=-2

g(x) giao trục hoành duy nhất một điểm hoành độ x=m/2

Ôn tập chương IV

b) f(x) >g(x) => điểm m/2 phải trong khoảng (-4,-2)

\(-4< \dfrac{m}{2}< -2\Leftrightarrow-8< m< -4\)

12 tháng 7 2018

a) f(x) = 2x.(x+2) - (x+2)(x+1) = 2x2 + 4x - (x2 + 3x + 2) = x2 + x - 2

Tam thức x2 + x – 2 có hai nghiệm x1 = -2 và x2 = 1, hệ số a = 1 > 0.

Vậy:

+ f(x) > 0 nếu x > x2 = 1 hoặc x < x1 = -2, hay x ∈ (-∞; -2) ∪ (1; + ∞)

+ f(x) < 0 nếu x1 < x < x2 hay x ∈ (-2; 1)

+ f(x) = 0 nếu x = -2 hoặc x = 1.

b)

* Hàm số y = 2x(x+2) = 2x2 + 4x có đồ thị (C1) là parabol có:

+ Tập xác định: D = R

+ Đỉnh I1( -1; -2)

+ Trục đối xứng: x = -1

+ Giao điểm với trục tung tại gốc tọa độ.

+ Giao điểm với trục hoành tại O(0; 0) và M(-2; 0).

+ Bảng biến thiên:

Giải bài 6 trang 160 SGK Đại Số 10 | Giải toán lớp 10

* Hàm số y = (x + 2)(x+1) = x2 + 3x + 2 có đồ thị (C2) là parabol có:

+ Tập xác định D = R.

+ Đỉnh Giải bài 6 trang 160 SGK Đại Số 10 | Giải toán lớp 10

+ Trục đối xứng: x = -3/2

+ Giao với trục tung tại D(0; 2)

+ Giao với trục hoành tại M(-2; 0) và E(-1; 0)

+ Bảng biến thiên

Giải bài 6 trang 160 SGK Đại Số 10 | Giải toán lớp 10

* Đồ thị:

Giải bài 6 trang 160 SGK Đại Số 10 | Giải toán lớp 10

* Tìm tọa độ giao điểm:

Cách 1: Dựa vào đồ thị hàm số:

Nhìn vào đồ thị thấy (C1) cắt (C2) tại A(1; 6) và B ≡ M(-2; 0)

Cách 2: Tính:

Hoành độ giao điểm của (C1) và (C2) là nghiệm của phương trình:

2x(x + 2) = (x + 2)(x + 1)

⇔ (x + 2).2x – (x + 2)(x + 1) = 0

⇔ (x + 2).(2x – x – 1) = 0

⇔ (x + 2).(x – 1) = 0

⇔ x = -2 hoặc x = 1.

+ x = -2 ⇒ y = 0. Ta có giao điểm B(-2; 0)

+ x = 1 ⇒ y = 6. Ta có giao điểm A(1; 6).

c)

+ Đồ thị hàm số y = ax2 + bx + c đi qua điểm A(1; 6) và B(-2; 0)

⇔ tọa độ A và B thỏa mãn phương trình y = ax2 + bx + c

Giải bài 6 trang 160 SGK Đại Số 10 | Giải toán lớp 10

+ Ta có bảng biến thiên của hàm số y = ax2 + bx + c:

Giải bài 6 trang 160 SGK Đại Số 10 | Giải toán lớp 10

Nhận thấy y đạt giá trị lớn nhất bằng 8

Giải bài 6 trang 160 SGK Đại Số 10 | Giải toán lớp 10

Thay b = 2 + a và c = 4 – 2a vào biểu thức 4ac – b2 = 32a ta được:

4.a.(4 – 2a) – (2 + a)2 = 32a

⇔ 16a – 8a2 – (a2 + 4a + 4) = 32a

⇔ 16a– 8a2 – a2 – 4a - 4 – 32a = 0

⇔ -9a2 - 20a - 4 = 0

⇔ a = -2 hoặc a = -2/9.

Nếu a = -2 ⇒ b = 0, c = 8, hàm số y = -2x2 + 8

Nếu a = -2/9 ⇒ b = 16/9, c = 40/9, hàm số Giải bài 6 trang 160 SGK Đại Số 10 | Giải toán lớp 10

10 tháng 5 2019

Vẽ đồ thị:

- Vẽ đồ thị hàm số y = f(x) = x + 1 qua hai điểm (0; 1) và (-1; 0).

- Vẽ đồ thị hàm số y = g(x) = 3 - x qua hai điểm (0; 3) và (3; 0)

Giải bài 5 trang 106 SGK Đại Số 10 | Giải toán lớp 10

a) Nghiệm của phương trình f(x) = g(x) chính là hoành độ giao điểm của hai đường thẳng y = f(x) và y = g(x).

Giao điểm của hai đường thẳng y = x + 1 và y = 3 – x là điểm A(1; 2).

Do đó phương trình f(x) = g(x) có nghiệm x = 1.

Kiểm tra bằng tính toán:

f(x) = g(x) ⇔ x + 1 = 3 - x ⇔ 2x = 2 ⇔ x = 1.

b) Khi x > 1 thì đồ thị hàm số y = f(x) nằm phía trên đồ thị hàm số y = g(x), hay với x > 1 thì f(x) > g(x).

Kiểm tra bằng tính toán:

f(x) > g(x) ⇔ x + 1 > 3 - x ⇔ 2x > 2 ⇔ x > 1.

c) Khi x < 1 thì đồ thị hàm số y = f(x) nằm phía dưới đồ thị hàm số y = g(x), hay với x < 1 thì f(x) < g(x).

Kiểm tra bằng tính toán:

f(x) < g(x) ⇔ x + 1 < 3 - x ⇔ 2x < 2 ⇔ x < 1.