K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 5 2017

Ix-1I+Ix-2I>x+3                                              (1)

Ta xét các TH về giá trị của x:

TH1: \(x< -1\)

(1) \(\leftrightarrow1-x+2-x>x+3\)

     \(\leftrightarrow3-x>x+3\)

     \(\leftrightarrow x< 0\)                                            (2)

TH2:\(-1\le x< 2\)

(1)\(\leftrightarrow x-1+2-x>x+3\)

    \(\leftrightarrow1>x+3\)

    \(\leftrightarrow x< -2\)(loại)                                         (3)

TH3:\(x\ge2\)

(1)\(\leftrightarrow x-1+x-2>x+3\)

    \(\leftrightarrow2x-3>x+3\)

     \(\leftrightarrow x>6\)                                              (4)

Từ (2),(3) và (4) \(\rightarrow\orbr{\begin{cases}x< 0\\x>6\end{cases}}\)

=>x^4+4x^2+9-4x^3-6x^2+12x<x^4-4x^3-2x^2+15x-3

=>-2x^2+12x+9<-2x^2+15x-3

=>-3x<-12

=>x>4

11 tháng 2 2016

\(a.\)  \(\left(x^2+1\right)^2+3x\left(x^2+1\right)+2x^2=0\)  \(\left(1\right)\)

Đặt  \(t=x^2+1\)   , khi đó phương trình \(\left(1\right)\)  trở thành:

\(t^2+3xt+2x^2=0\)

\(\Leftrightarrow\)  \(\left(t+x\right)\left(t+2x\right)=0\)

\(\Leftrightarrow\)  \(^{t+x=0}_{t+2x=0}\)

\(\text{*}\)  \(t+x=0\)

\(\Leftrightarrow\)  \(x^2+x+1=0\)

Vì  \(x^2+x+1=\left(x+\frac{1}{2}\right)^2+\frac{3}{4}\ne0\)  với mọi  \(x\)  nên phương trình vô nghiệm

\(\text{*}\)  \(t+2x=0\)

\(\Leftrightarrow\)  \(x^2+2x+1=0\)

\(\Leftrightarrow\)  \(\left(x+1\right)^2=0\)

\(\Leftrightarrow\)  \(x+1=0\)

\(\Leftrightarrow\)  \(x=-1\)

Vậy, tập nghiệm của pt là  \(S=\left\{-1\right\}\)

11 tháng 2 2016

\(b.\)  \(\left(x^2-9\right)^2=12x+1\)

\(\Leftrightarrow\)  \(x^4-18x^2+81-12x-1=0\)

\(\Leftrightarrow\)  \(x^4-18x^2-12x+80=0\)

\(\Leftrightarrow\)  \(x^4-2x^3+2x^3-4x^2-14x^2+28x-40x+80=0\)

\(\Leftrightarrow\)  \(x^3\left(x-2\right)+2x^2\left(x-2\right)-14x\left(x-2\right)-40\left(x-2\right)=0\)

\(\Leftrightarrow\)  \(\left(x-2\right)\left(x^3+2x^2-14x-40\right)=0\)

\(\Leftrightarrow\)  \(\left(x-2\right)\left(x-4\right)\left(x^2+6x+10\right)=0\)

  Vì  \(x^2+6x+10=\left(x+3\right)^2+1\ne0\)  với mọi  \(x\)

\(\Rightarrow\)  \(\left(x-2\right)\left(x-4\right)=0\)

\(\Leftrightarrow\)  \(^{x_1=2}_{x_2=4}\)

Vậy,  phương trình đã cho có các nghiệm  \(x_1=2;\)  \(x_2=4\)

11 tháng 5 2018

5x-2>2(x+3)\(\Leftrightarrow\)5x-2>2x+6

\(\Leftrightarrow\) 5x-2x>6+2

\(\Leftrightarrow\)3x>8

\(\Leftrightarrow\)x>\(\dfrac{8}{3}\)

0 8/3

Chúc bn học tốt❤

6 tháng 4 2018

\(bpt\Leftrightarrow\left[\left(x+1\right)^2+3\right]\left(x-1\right)< 0\)

\(\left(x+1\right)^2+3>0\Leftrightarrow x-1< 0\Leftrightarrow x< 1\)