K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 10 2019

⇔ (x – 2)(x – 2) – 3(x + 2) = 2x – 22

⇔ x 2  – 2x – 2x + 4 – 3x – 6 = 2x – 22

⇔  x 2  – 2x – 2x – 3x – 2x + 4 – 6 + 22 = 0

⇔  x 2  – 9x + 20 = 0

⇔  x 2  – 5x – 4x + 20 = 0

⇔ x(x – 5) – 4(x – 5) = 0

⇔ (x – 4)(x – 5) = 0

⇔ x – 4 = 0 hoặc x – 5 = 0

x – 4 = 0 ⇔ x = 4

x – 5 = 0 ⇔ x = 5

Vậy phương trình có nghiệm x = 4 hoặc x = 5.

21 tháng 3 2022

\(a,\left(2x-3\right)\left(x^2-4\right)=0\\ \Leftrightarrow\left(2x-3\right)\left(x-2\right)\left(x+2\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=\dfrac{3}{2}\\x=2\\x=-2\end{matrix}\right.\\ b,2x-\left(3-5x\right)=4\left(x+3\right)\\ \Leftrightarrow2x-3+5x=4x+12\\ \Leftrightarrow7x-3-4x-12=0\\ \Leftrightarrow3x-15=0\\ \Leftrightarrow x=5\)

\(c,ĐKXĐ:\left\{{}\begin{matrix}x\ne-1\\x\ne2\end{matrix}\right.\)

\(\dfrac{1}{x-2}-\dfrac{2}{x+1}=\dfrac{11-3x}{\left(x+1\right)\left(x-2\right)}\\ \Leftrightarrow\dfrac{x+1}{\left(x-2\right)\left(x+1\right)}-\dfrac{x-2}{\left(x+1\right)\left(x-2\right)}-\dfrac{11-3x}{\left(x+1\right)\left(x-2\right)}=0\\ \Leftrightarrow\dfrac{x+1-x+2-11+3x}{\left(x+1\right)\left(x-2\right)}=0\\ \Rightarrow3x-8=0\\ \Leftrightarrow x=\dfrac{8}{3}\left(tm\right)\)

a: 11x+4=-3/2

=>\(11x=-\dfrac{3}{2}-4=-\dfrac{11}{2}\)

=>\(x=-\dfrac{1}{2}\)

b: \(x^2-9+2\left(x-3\right)=0\)

=>\(\left(x-3\right)\left(x+3\right)+2\left(x-3\right)=0\)

=>\(\left(x-3\right)\left(x+3+2\right)=0\)

=>(x-3)(x+5)=0

=>\(\left[{}\begin{matrix}x-3=0\\x+5=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=3\\x=-5\end{matrix}\right.\)

c: \(\dfrac{x-3}{5}+\dfrac{1+2x}{3}=6\)

=>\(\dfrac{3\left(x-3\right)+5\left(2x+1\right)}{15}=6\)

=>\(3x-9+10x+5=90\)

=>13x-4=90

=>13x=94

=>\(x=\dfrac{94}{13}\)

d: \(\dfrac{2}{x+1}-\dfrac{1}{x-2}=\dfrac{3x-11}{\left(x+1\right)\left(x-2\right)}\)(ĐKXĐ: \(x\notin\left\{-1;2\right\}\))

=>\(\dfrac{2\left(x-2\right)-\left(x+1\right)}{\left(x+1\right)\left(x-2\right)}=\dfrac{3x-11}{\left(x-2\right)\left(x+1\right)}\)

=>3x-11=2x-4-x-1

=>3x-11=x-5

=>2x=6

=>x=3(nhận)

23 tháng 4 2020

\(\frac{x-2}{x+2}+\frac{3}{x-2}=\frac{x^2-11}{x^2-4}\left(x\ne\pm2\right)\)

\(\Leftrightarrow\frac{x-2}{x+2}+\frac{3}{x-2}-\frac{x^2-11}{x^2-4}=0\)

<=> \(\frac{\left(x-2\right)^2}{\left(x-2\right)\left(x+2\right)}+\frac{3\left(x+2\right)}{\left(x-2\right)\left(x+2\right)}-\frac{x^2-11}{\left(x-2\right)\left(x+2\right)}=0\)

<=> \(\frac{x^2-4x+4}{\left(x-2\right)\left(x+2\right)}+\frac{3x+6}{\left(x-2\right)\left(x+2\right)}-\frac{x^2-11}{\left(x-2\right)\left(x+2\right)}=0\)

<=> \(\frac{x^2-4x+4+3x+6-x^2+11}{\left(x-2\right)\left(x+2\right)}=0\)

<=> \(\frac{-x+21}{\left(x-2\right)\left(x+2\right)}=0\)

=> -x+21=0

<=> -x=-21

<=> x=21 (tmđk)

Vậy x=21 là nghiệm của pt

23 tháng 4 2020

\(\frac{x}{2x-6}-\frac{2}{2x+2}=\frac{2x}{\left(x+1\right)\left(x-3\right)}\left(x\ne-1;x\ne3\right)\)

<=> \(\frac{x}{2x-6}-\frac{2}{2x+2}-\frac{2x}{\left(x+1\right)\left(x-3\right)}=0\)

<=> \(\frac{x}{2\left(x-3\right)}-\frac{2}{2\left(x+1\right)}-\frac{2x}{\left(x+1\right)\left(x-3\right)}=0\)

<=> \(\frac{\left(x+1\right)^2}{2\left(x+1\right)\left(x-3\right)}-\frac{2\left(x-3\right)}{2\left(x+1\right)\left(x-3\right)}-\frac{2x\cdot2}{\left(x+1\right)\left(x-3\right)2}=0\)

<=> \(\frac{x^2+2x+1}{2\left(x+1\right)\left(x-3\right)}-\frac{2x-6}{2\left(x+1\right)\left(x-3\right)}-\frac{4x}{2\left(x+1\right)\left(x-3\right)}=0\)

<=> \(\frac{x^2+2x+1-2x-6-4x}{2\left(x+1\right)\left(x-3\right)}=0\)

<=> \(\frac{x^2-4x-5}{2\left(x+1\right)\left(x-3\right)}=0\)

=> x2-4x-5=0

<=> x2-5x+x-5=0

<=> x(x-5)+(x-5)=0

<=> (x-5)(x+1)=0

\(\Leftrightarrow\orbr{\begin{cases}x-5=0\\x+1=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=5\\x=-1\end{cases}}}\)

Đối chiếu điều kiện => x=5

Vậy x=5 là nghiệm của pt

18 tháng 1 2022

Bài 1:

(x+1)(x+9)=(x+3)(x+5)

⇔x2+10x+9=x2+8x+15

⇔2x-6=0

⇔x=3

(x-1)3-x(x+1)2=5x(2-x)-11(x+2)

⇔x3-3x2+3x-1-x3-2x2-x=10x-5x2-11x-22

⇔-5x2+2x-1=-5x2-x-22

⇔3x+21=0

⇔x=-7

5 tháng 3 2023

loading...  

6 tháng 3 2023

cais cuối là :

\(\Leftrightarrow x=1\left(ktm\right)\)

vậy pt ko có nghiệm á

27 tháng 9 2019

Ta có:

Bài tập: Phương trình đưa được về dạng ax + b = 0 | Lý thuyết và Bài tập Toán 8 có đáp án

Bài tập: Phương trình đưa được về dạng ax + b = 0 | Lý thuyết và Bài tập Toán 8 có đáp án

⇔ 4x + 20 + 3x + 36 - 5x + 10 = 2x + 66

⇔ 0x = 0

⇒ Phương trình đã cho vô số nghiệm.

Vậy phương trình đã cho vô số nghiệm.

22 tháng 4 2022

a.\(x^2-25=8\left(5-x\right)\)

\(\Leftrightarrow\left(x-5\right)\left(x+5\right)-8\left(5-x\right)=0\)

\(\Leftrightarrow\left(x-5\right)\left(x+5\right)+8\left(x-5\right)=0\)

\(\Leftrightarrow\left(x-5\right)\left(x+13\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=5\\x=-13\end{matrix}\right.\)

b.\(\dfrac{x-2}{x+2}-\dfrac{2\left(x-11\right)}{x^2-4}=\dfrac{3}{x-2}\) ; \(ĐK:x\ne\pm2\)

\(\Leftrightarrow\dfrac{\left(x-2\right)\left(x-2\right)-2\left(x-11\right)}{\left(x-2\right)\left(x+2\right)}=\dfrac{3\left(x+2\right)}{\left(x-2\right)\left(x+2\right)}\)

\(\Leftrightarrow\left(x-2\right)^2-2\left(x-11\right)=3\left(x+2\right)\)

\(\Leftrightarrow x^2-4x+4-2x+22=3x+6\)

\(\Leftrightarrow x^2-9x+20=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=5\left(tm\right)\\x=4\left(tm\right)\end{matrix}\right.\)

 

8 tháng 3 2023

`8(x-3)(x+1)=8x^2 +11`

`<=>8(x^2 +x-3x-3)-8x^2 -11=0`

`<=>8x^2 +8x-24x-24-8x^2 -11=0`

`<=>-16x-35=0`

`<=>-16x=35`

`<=>x=-35/16`

 

\(\dfrac{x+2}{x-2}-\dfrac{2}{x^2-2x}=\dfrac{1}{x}\left(x\ne0;x\ne2\right)\\ < =>\dfrac{x\left(x+2\right)}{x\left(x-2\right)}-\dfrac{2}{x\left(x-2\right)}=\dfrac{x-2}{x\left(x-2\right)}\)

suy ra

`x^2 +2x-2=x-2`

`<=>x^2 +2x-x-2+2=0`

`<=>x^2 +x=0`

`<=>x(x+1)=0`

\(< =>\left[{}\begin{matrix}x=0\\x+1=0\end{matrix}\right.\\ < =>\left[{}\begin{matrix}x=0\left(ktm\right)\\x=-1\left(tm\right)\end{matrix}\right.\\ < =>x=-1\)

8 tháng 3 2023

\(a,8\left(x-3\right)\left(x+1\right)=8x^2+11\\ \Leftrightarrow\left(8x-24\right)\left(x+1\right)=8x^2+11\\ \Leftrightarrow8x^2-24x+8x-24-8x^2-11=0\\ \Leftrightarrow-16x-35=0\\ \Leftrightarrow x=\dfrac{-35}{16}\)

Vậy \(x=-\dfrac{35}{16}\)

\(b,đkxđ:x\ne2;x\ne0\)

\(\dfrac{x+2}{x-2}-\dfrac{2}{x^2-2x}-\dfrac{1}{x}=0\\ \Leftrightarrow\dfrac{x\left(x+2\right)}{x\left(x-2\right)}-\dfrac{2}{x\left(x-2\right)}-\dfrac{x-2}{x\left(x-2\right)}=0\\ \Leftrightarrow x^2+2x-2-x+2=0\\ \Leftrightarrow x^2+x=0\\ \Leftrightarrow x\left(x+1\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=0\left(loại\right)\\x=-1\left(t/m\right)\end{matrix}\right.\)

Vậy \(x=-1\)

@ducminh 

16 tháng 2 2022

\(a,\left(x-6\right)\left(2x-5\right)\left(3x+9\right)=0\Leftrightarrow\left[{}\begin{matrix}x-6=0\Leftrightarrow x=6\\2x-5=0\Leftrightarrow x=\dfrac{5}{2}\\3x+9=0\Leftrightarrow x=-3\end{matrix}\right.\)

\(b,2x\left(x-3\right)+5\left(x-3\right)=0\Leftrightarrow\left(2x+5\right)\left(x-3\right)=0\Leftrightarrow\left[{}\begin{matrix}x-3=0\Leftrightarrow x=3\\2x+5=0\Leftrightarrow x=-\dfrac{5}{2}\end{matrix}\right.\)

\(c,x^2-4-\left(x-2\right)\left(3-2x\right)=0\Leftrightarrow\left(x-2\right)\left(x+2\right)-\left(x-2\right)\left(3-2x\right)=0\Leftrightarrow\left(x-2\right)\left(x+2-3+2x\right)=0\Leftrightarrow\left[{}\begin{matrix}x=2\\x=\dfrac{1}{3}\end{matrix}\right.\)

\(x=-7\left(2m-5\right)x-2m^2+8\Leftrightarrow x+7\left(2m-5\right)=8-2m^2\Leftrightarrow x\left(14m-34\right)=8-2m^2\)

\(ycđb\Leftrightarrow14m-34\ne0\Leftrightarrow m\ne\dfrac{34}{14}\)\(\Rightarrow x=\dfrac{8-2m^2}{14m-34}\)

\(3.17\Leftrightarrow4x^2-4x+1-2x-1=0\Leftrightarrow4x^2-6x=0\Leftrightarrow x\left(4x-6\right)=0\Leftrightarrow\left[{}\begin{matrix}x=0\\x=\dfrac{3}{2}\end{matrix}\right.\)

16 tháng 2 2022

3.15:

a, \(\Leftrightarrow\left\{{}\begin{matrix}x-6=0\\2x-5=0\\3x+9=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=6\\x=\dfrac{5}{2}\\x=-\dfrac{9}{3}=-3\end{matrix}\right.\)

 

b, \(\Leftrightarrow\left(x-3\right)\left(2x+5\right)=0\)

\(\Leftrightarrow\left\{{}\begin{matrix}x-3=0\\2x+5=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=3\\x=-\dfrac{5}{2}\end{matrix}\right.\)

c, \(\Leftrightarrow\left(x-2\right)\left(x+2\right)-\left(x-2\right)\left(3-2x\right)=0\)

\(\Leftrightarrow\left(x-2\right)\left(x+2-3+2x\right)=0\)

\(\Leftrightarrow\left\{{}\begin{matrix}x-2=0\\3x-1=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=2\\x=\dfrac{1}{3}\end{matrix}\right.\)

 

3.16

\(\Leftrightarrow\left(2m-5\right).-7-2m^2+8=0\)

\(\Leftrightarrow-14m+35-2m^2+8=0\)

\(\Leftrightarrow-14m-2m^2+43=0\)

\(\Leftrightarrow-2\left(7m+m^2\right)=-43\)

\(\Leftrightarrow m\left(7-m\right)=\dfrac{43}{2}\)

\(\Leftrightarrow\dfrac{m\left(7-m\right)}{1}-\dfrac{43}{2}=0\)

\(\Leftrightarrow\dfrac{14m-2m^2}{2}-\dfrac{43}{2}=0\)

pt vô nghiệm

23 tháng 2 2021

Mình khuyên bạn thế này : 

Bạn nên tách những câu hỏi ra 

Như vậy các bạn sẽ dễ giúp

Và cũng có nhiều bạn giúp hơn !

23 tháng 2 2021

Bài 1.

a) ( x - 3 )( x + 7 ) = 0

<=> x - 3 = 0 hoặc x + 7 = 0

<=> x = 3 hoặc x = -7

Vậy S = { 3 ; -7 }

b) ( x - 2 )2 + ( x - 2 )( x - 3 ) = 0

<=> ( x - 2 )( x - 2 + x - 3 ) = 0

<=> ( x - 2 )( 2x - 5 ) = 0

<=> x - 2 = 0 hoặc 2x - 5 = 0

<=> x = 2 hoặc x = 5/2

Vậy S = { 2 ; 5/2 }

c) x2 - 5x + 6 = 0

<=> x2 - 2x - 3x + 6 = 0

<=> x( x - 2 ) - 3( x - 2 ) = 0

<=> ( x - 2 )( x - 3 ) = 0

<=> x - 2 = 0 hoặc x - 3 = 0

<=> x = 2 hoặc x = 3