Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, pt <=> (x^4-4x+4)+(x^2+6x+9) = 0
<=> (x^2-2)^2+(x+3)^2=0
<=> x^2-2=0 và x+3=0
=> pt vô nghiệm
b, pt <=> (x-1).(x^6+x^5+x^4+x^3+x^2+x+1) = 0
<=> x^7+x^6+x^5+x^4+x^3+x^2+x-x^6-x^5-x^4-x^3-x^2-x-1 = 0
<=> x^7-1=0
<=> x^7=1 = 1^7
=> x=1
Tk mk nha
a) 3x-6=0
3x=6 => x=2
b) (3x+2)(4x-5)=0
=> 3x+2=0 => x=-2/3
hoặc 4x-5=0 => x=5/4
câu c ,d thiếu dấu '=" để thành 1 pt rồi bạn
a: \(x-3\left(2x-6\right)=21-\left(5x+3\right)\)
=>\(x-6x+18=21-5x-3\)
=>18=18(luôn đúng)
=>\(x\in R\)
b: \(\left(x-2\right)\left(x+2\right)-\left(x-1\right)^2=2\left(x+1\right)\)
=>\(x^2-4-x^2+2x-1=2x+2\)
=>2x-5=2x+2
=>-7=0(vô lý)
=>\(x\in\varnothing\)
c: \(\dfrac{9x+4}{6}=1-\dfrac{3x-5}{9}\)
=>\(\dfrac{3\left(9x+4\right)}{18}=\dfrac{18}{18}-\dfrac{2\left(3x-5\right)}{18}\)
=>3(9x+4)=18-2(3x-5)
=>27x+12=18-6x+10
=>27x+12=-6x+28
=>33x=16
=>\(x=\dfrac{16}{33}\left(nhận\right)\)
d: ĐKXĐ: \(x\notin\left\{2;5\right\}\)
\(\dfrac{6x+1}{x^2-7x+10}+\dfrac{5}{x-2}=\dfrac{3}{x-5}\)
=>\(\dfrac{6x+1}{\left(x-2\right)\left(x-5\right)}+\dfrac{5}{x-2}=\dfrac{3}{x-5}\)
=>\(6x+1+5\left(x-5\right)=3\left(x-2\right)\)
=>6x+1+5x-25=3x-6
=>11x-24=3x-6
=>8x=18
=>\(x=\dfrac{9}{4}\left(nhận\right)\)
a: x−3(2x−6)=21−(5x+3)
=>x−6x+18=21−5x−3
=>18=18(luôn đúng)
=>x∈R
b: (x−2)(x+2)−(x−1)2=2(x+1)
=>x2−4−x2+2x−1=2x+2
=>2x-5=2x+2
=>-7=0(vô lý)
=>x∈∅
c: 9x+46=1−3x−59
=>3(9x+4)18=1818−2(3x−5)18
=>3(9x+4)=18-2(3x-5)
=>27x+12=18-6x+10
=>27x+12=-6x+28
=>33x=16
=>x=1633(nhận)
d: ĐKXĐ: x∉{2;5}
6x+1x2−7x+10+5x−2=3x−5
=>6x+1(x−2)(x−5)+5x−2=3x−5
=>6x+1+5(x−5)=3(x−2)6
=>6x+1+5x-25=3x-6
=>11x-24=3x-6
=>8x=18
=>x=94(nhận)
a)
\(2x-1+5\left(3-x\right)>0\\ 2x-2+15-5x>0\\ -3x+13>0\\ x< \dfrac{13}{3}.\)
A 3x-4x=-9-3
-x=-12
x=12
B 3.2x -5x +1=5+0.2x
3.2x-5x-0.2x=5-1
-2x=4
x=-2
C 1.5-x-2=-3x-0.3
-x+3x=-0.3-1.5+2
2x =0.2
x=0.1
E 2/3-1/2x-1=-x+1
-1/2x+x=1+1-2/3
1/2x=4/3
x=8/3
F 3t-4+13+2t+4-3t
=3t+2t-3t-4+13+4
=2t+13
\(a,3x-12=0\)
\(\Leftrightarrow3x=12\)
\(\Leftrightarrow x=4\)
\(b,\left(x-2\right)\left(2x+3\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-2=0\\2x+3=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=2\\x=-\dfrac{3}{2}\end{matrix}\right.\)
\(c,\dfrac{x+2}{x-2}-\dfrac{6}{x+2}=\dfrac{x^2}{x^2-4}\left(dkxd:x\ne\pm2\right)\)
\(\Leftrightarrow\dfrac{\left(x+2\right)^2-6\left(x-2\right)-x^2}{x^2-4}=0\)
\(\Leftrightarrow x^2+4x+4-6x+12-x^2=0\)
\(\Leftrightarrow-2x+16=0\)
\(\Leftrightarrow-2x=-16\)
\(\Leftrightarrow x=8\left(tmdk\right)\)
\(a,3x-12=0\)
\(\Leftrightarrow3x=12\)
\(\Leftrightarrow x=4.\)
Vậy \(S=\left\{4\right\}\)
\(b,\left(x-2\right)\left(2x+3\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x-2=0\\2x+3=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=2.\\x=\dfrac{-3}{2}.\end{matrix}\right.\)
Vậy \(S=\left\{2;\dfrac{-3}{2}\right\}\)
\(c,\dfrac{x+2}{x-2}-\dfrac{6}{x+2}=\dfrac{x^2}{x^2-4}\left(ĐKXĐ:x\ne\pm2\right)\)
\(\Leftrightarrow\dfrac{\left(x+2\right)^2}{\left(x-2\right)\left(x+2\right)}-\dfrac{6\left(x-2\right)}{\left(x-2\right)\left(x+2\right)}-\dfrac{x^2}{\left(x-2\right)\left(x+2\right)}=0\)
\(\Leftrightarrow\dfrac{x^2+4x+4}{\left(x-2\right)\left(x+2\right)}-\dfrac{6x-12}{\left(x-2\right)\left(x+2\right)}-\dfrac{x^2}{\left(x-2\right)\left(x+2\right)}=0\)
\(\Rightarrow x^2+4x+4-6x+12-x^2=0\)
\(\Leftrightarrow-2x+16=0\)
\(\Leftrightarrow-2x=-16\)
\(\Leftrightarrow x=8\left(tm\right).\)
Vậy \(S=\left\{8\right\}\)
Bài `1:`
`h)(3/4x-1)(5/3x+2)=0`
`=>[(3/4x-1=0),(5/3x+2=0):}=>[(x=4/3),(x=-6/5):}`
______________
Bài `2:`
`b)3x-15=2x(x-5)`
`<=>3(x-5)-2x(x-5)=0`
`<=>(x-5)(3-2x)=0<=>[(x=5),(x=3/2):}`
`d)x(x+6)-7x-42=0`
`<=>x(x+6)-7(x+6)=0`
`<=>(x+6)(x-7)=0<=>[(x=-6),(x=7):}`
`f)x^3-2x^2-(x-2)=0`
`<=>x^2(x-2)-(x-2)=0`
`<=>(x-2)(x^2-1)=0<=>[(x=2),(x^2=1<=>x=+-2):}`
`h)(3x-1)(6x+1)=(x+7)(3x-1)`
`<=>18x^2+3x-6x-1=3x^2-x+21x-7`
`<=>15x^2-23x+6=0<=>15x^2-5x-18x+6=0`
`<=>(3x-1)(5x-1)=0<=>[(x=1/3),(x=1/5):}`
`j)(2x-5)^2-(x+2)^2=0`
`<=>(2x-5-x-2)(2x-5+x+2)=0`
`<=>(x-7)(3x-3)=0<=>[(x=7),(x=1):}`
`w)x^2-x-12=0`
`<=>x^2-4x+3x-12=0`
`<=>(x-4)(x+3)=0<=>[(x=4),(x=-3):}`
`m)(1-x)(5x+3)=(3x-7)(x-1)`
`<=>(1-x)(5x+3)+(1-x)(3x-7)=0`
`<=>(1-x)(5x+3+3x-7)=0`
`<=>(1-x)(8x-4)=0<=>[(x=1),(x=1/2):}`
`p)(2x-1)^2-4=0`
`<=>(2x-1-2)(2x-1+2)=0`
`<=>(2x-3)(2x+1)=0<=>[(x=3/2),(x=-1/2):}`
`r)(2x-1)^2=49`
`<=>(2x-1-7)(2x-1+7)=0`
`<=>(2x-8)(2x+6)=0<=>[(x=4),(x=-3):}`
`t)(5x-3)^2-(4x-7)^2=0`
`<=>(5x-3-4x+7)(5x-3+4x-7)=0`
`<=>(x+4)(9x-10)=0<=>[(x=-4),(x=10/9):}`
`u)x^2-10x+16=0`
`<=>x^2-8x-2x+16=0`
`<=>(x-2)(x-8)=0<=>[(x=2),(x=8):}`