Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đăng mấy câu lớp 9 thì bó tay !
- tôi ko có bít
- ???????
- tự làm nhé
- k tui nha !
- kb vs tui nha !
- chuk bn may mắn
(Lưu ý: ΔABC vuông tại A nên ∠ B + ∠ C = 90 °
Giải tam giác tức là đi tìm số đo các cạnh và các góc còn lại.)
a)
∠ B = 90 o - ∠ C = 90 ° - 30 ° = 60 °
c = b . t g C = 10 . t g 30 ° ≈ 5 , 77 ( c m )
b)
∠ B = 90 ° - ∠ C = 90 ° - 45 ° = 45 °
=> ΔABC cân => b = c = 10 (cm)
c)
∠ B = 90 o - ∠ C = 90 ° - 35 ° = 55 ° b = a sin B = 20 . sin 35 ° ≈ 11 , 47 ( c m ) c = a sin C = 20 . sin 55 ° ≈ 16 , 38 ( c m )
d)
(Ghi chú: Bạn nên sử dụng các kí hiệu cạnh là a, b, c (thay vì BC, AC, AB) để đồng bộ với đề bài đã cho.
Cách để nhớ các cạnh là: cạnh nào thiếu chữ cái nào thì chữ cái đó là kí hiệu của cạnh đó. Ví dụ: cạnh AB thiếu chữ cái C nên c là kí hiệu của cạnh.
hoặc cạnh đối diện với góc nào thì đó chính là kí hiệu của cạnh. Ví dụ: cạnh đối diện với góc B là cạnh b (chính là cạnh AC))
a) Áp dụng HTL ta có:\(MH.HP=MH^2\Rightarrow x=\sqrt{2.8}=4\)
\(BC=MH+HP=10\)
Áp dụng HTL ta có: \(HP.NP=MP^2\Rightarrow y=\sqrt{8.10}=4\sqrt{5}\)
b) Áp dụng HTL ta có: \(EQ.QF=DQ^2\Rightarrow x=\dfrac{4^2}{1}=16\)
\(EF=EQ+QF=17\)
Áp dụng HTL ta có: \(QP.EF=y^2\Rightarrow y=\sqrt{17.1}=\sqrt{17}\)
b) Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:
\(BC^2=AB^2+AC^2\)
\(\Leftrightarrow AB^2=5.7^2-4.1^2=15,68\left(cm\right)\)
hay \(AB=\dfrac{14\sqrt{2}}{5}\left(cm\right)\)
Xét ΔABC vuông tại A có
\(\sin\widehat{C}=\dfrac{AB}{BC}=\dfrac{14\sqrt{2}}{5}:\dfrac{57}{10}=\dfrac{28\sqrt{2}}{57}\)
hay \(\widehat{C}\simeq44^0\)
Ta có: ΔABC vuông tại A(gt)
nên \(\widehat{C}+\widehat{B}=90^0\)
hay \(\widehat{B}=46^0\)
a: \(\widehat{C}=90^0-58^0=32^0\)
Xet ΔABC vuông tại A có \(\sin B=\dfrac{AC}{BC}\)
nên \(AC=BC\cdot\sin B=72\cdot\sin58^0\simeq61,06\left(cm\right)\)
\(AB=\sqrt{BC^2-AB^2}=\sqrt{72^2-61.06^2}=38.15\left(cm\right)\)
b: \(\widehat{C}=90^0-48^0=42^0\)
Xét ΔABC vuông tại A có
\(AC=BC\cdot\cos C\)
nên \(BC=\dfrac{20}{\cos42^0}\simeq26.91\left(cm\right)\)
\(AB=\sqrt{26.91^2-20^2}=18.004\left(cm\right)\)
c: \(\widehat{B}=90^0-30^0=60^0\)
Xét ΔABC vuông tại A có
\(b=AC=BC\cdot\sin B\)
nên \(BC=\dfrac{AC}{\sin60^0}=\dfrac{15}{\sin60^0}=10\sqrt{3}\left(cm\right)\)
=>\(AB=\sqrt{\left(10\sqrt{3}\right)^2-15^2}=5\sqrt{3}\left(cm\right)\)
hổng bít lm, mới học lớp 5 thui à
không bít mới học lớp 6