K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 5 2017

Đăng mấy câu lớp 9 thì bó tay !

  • tôi ko có bít
  • ???????
  • tự làm nhé
  • k tui nha !
  • kb vs tui nha !
  • chuk bn may mắn
28 tháng 5 2017

;mới hoc lớp 2 à chưa biết lớp 9

24 tháng 4 2017

a) (H.a)

B^=90∘−30∘=60∘.

AB=AC⋅tgC=10⋅tg30∘≈5,774(cm)

BC=ACcosC=10cos⁡30∘≈11,547(cm).

b) (H.b)

B^=90∘−45∘=45∘.

⇒AC=AB=10(cm);

BC=ABsinC=10sin⁡45∘≈14,142(cm)

c) (H.c)

7 tháng 2 2018

(Lưu ý: ΔABC vuông tại A nên  ∠ B   +   ∠ C   =   90 °

Giải tam giác tức là đi tìm số đo các cạnh và các góc còn lại.)

a)

Để học tốt Toán 9 | Giải bài tập Toán 9

∠ B   =   90 o   -   ∠ C   =   90 °   -   30 °   =   60 °

c   =   b . t g C   =   10 . t g   30 °   ≈   5 , 77   ( c m )

Để học tốt Toán 9 | Giải bài tập Toán 9

b)

Để học tốt Toán 9 | Giải bài tập Toán 9

∠ B   =   90 °   -   ∠ C   =   90 °   -   45 °   =   45 °

=> ΔABC cân => b = c = 10 (cm)

Để học tốt Toán 9 | Giải bài tập Toán 9

c)

Để học tốt Toán 9 | Giải bài tập Toán 9

∠ B   =   90 o   -   ∠ C   =   90 °   -   35 °   =   55 °   b   =   a sin B   =   20 . sin 35 °   ≈   11 , 47   ( c m )     c   =   a sin C   =   20 . sin 55 °   ≈   16 , 38   ( c m )

d)

Để học tốt Toán 9 | Giải bài tập Toán 9

Để học tốt Toán 9 | Giải bài tập Toán 9

(Ghi chú: Bạn nên sử dụng các kí hiệu cạnh là a, b, c (thay vì BC, AC, AB) để đồng bộ với đề bài đã cho.

Cách để nhớ các cạnh là: cạnh nào thiếu chữ cái nào thì chữ cái đó là kí hiệu của cạnh đó. Ví dụ: cạnh AB thiếu chữ cái C nên c là kí hiệu của cạnh.

hoặc cạnh đối diện với góc nào thì đó chính là kí hiệu của cạnh. Ví dụ: cạnh đối diện với góc B là cạnh b (chính là cạnh AC))

29 tháng 10 2021

a) Áp dụng HTL ta có:\(MH.HP=MH^2\Rightarrow x=\sqrt{2.8}=4\)

\(BC=MH+HP=10\)

Áp dụng HTL ta có: \(HP.NP=MP^2\Rightarrow y=\sqrt{8.10}=4\sqrt{5}\)

b) Áp dụng HTL ta có: \(EQ.QF=DQ^2\Rightarrow x=\dfrac{4^2}{1}=16\)

\(EF=EQ+QF=17\)

Áp dụng HTL ta có: \(QP.EF=y^2\Rightarrow y=\sqrt{17.1}=\sqrt{17}\)

  

b) Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:

\(BC^2=AB^2+AC^2\)

\(\Leftrightarrow AB^2=5.7^2-4.1^2=15,68\left(cm\right)\)

hay \(AB=\dfrac{14\sqrt{2}}{5}\left(cm\right)\)

Xét ΔABC vuông tại A có 

\(\sin\widehat{C}=\dfrac{AB}{BC}=\dfrac{14\sqrt{2}}{5}:\dfrac{57}{10}=\dfrac{28\sqrt{2}}{57}\)

hay \(\widehat{C}\simeq44^0\)

Ta có: ΔABC vuông tại A(gt)

nên \(\widehat{C}+\widehat{B}=90^0\)

hay \(\widehat{B}=46^0\)

31 tháng 8 2023

cách nào để tính từ sin \(\widehat{C}\)

chuyền sang \(^{\widehat{C}}\) vậy ạ?

 

a: \(\widehat{C}=90^0-58^0=32^0\)

Xet ΔABC vuông tại A có \(\sin B=\dfrac{AC}{BC}\)

nên \(AC=BC\cdot\sin B=72\cdot\sin58^0\simeq61,06\left(cm\right)\)

\(AB=\sqrt{BC^2-AB^2}=\sqrt{72^2-61.06^2}=38.15\left(cm\right)\)

b: \(\widehat{C}=90^0-48^0=42^0\)

Xét ΔABC vuông tại A có 

\(AC=BC\cdot\cos C\)

nên \(BC=\dfrac{20}{\cos42^0}\simeq26.91\left(cm\right)\)

\(AB=\sqrt{26.91^2-20^2}=18.004\left(cm\right)\)

c: \(\widehat{B}=90^0-30^0=60^0\)

Xét ΔABC vuông tại A có 

\(b=AC=BC\cdot\sin B\)

nên \(BC=\dfrac{AC}{\sin60^0}=\dfrac{15}{\sin60^0}=10\sqrt{3}\left(cm\right)\)

=>\(AB=\sqrt{\left(10\sqrt{3}\right)^2-15^2}=5\sqrt{3}\left(cm\right)\)