K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Đặt \(A=\sqrt[3]{2+\sqrt{5}}+\sqrt[3]{2-\sqrt{5}}\)

\(\Leftrightarrow A^3=2+\sqrt{5}+2-\sqrt{5}+3\cdot\sqrt[3]{\left(2+\sqrt{5}\right)\left(2-\sqrt{5}\right)}\cdot\left(\sqrt[3]{2+\sqrt{5}}+\sqrt[3]{2-\sqrt{5}}\right)\)

\(\Leftrightarrow A^3=4+3\cdot\left(-1\right)\cdot A\)

\(\Leftrightarrow A^3=4-3A\)

\(\Leftrightarrow A^3+3A-4=0\)

\(\Leftrightarrow A^3-A^2+A^2-A+4A-4=0\)

\(\Leftrightarrow A^2\left(A-1\right)+A\left(A-1\right)+4\left(A-1\right)=0\)

\(\Leftrightarrow\left(A-1\right)\left(A^2+A+4\right)=0\)

\(\Leftrightarrow A=1\)

16 tháng 2 2022

\(a,A=\left(\dfrac{x+14\sqrt{x}-5}{x-25}+\dfrac{\sqrt{x}}{\sqrt{x}+5}\right):\dfrac{\sqrt{x}+2}{\sqrt{x}-5}\)

\(\Rightarrow A=\left(\dfrac{x+14\sqrt{x}-5}{\left(\sqrt{x}+5\right)\left(\sqrt{x}-5\right)}+\dfrac{\sqrt{x}\left(\sqrt{x}-5\right)}{\left(\sqrt{x}+5\right)\left(\sqrt{x}-5\right)}\right).\dfrac{\sqrt{x}-5}{\sqrt{x}+2}\)

\(\Rightarrow A=\left(\dfrac{x+14\sqrt{x}-5}{\left(\sqrt{x}+5\right)\left(\sqrt{x}-5\right)}+\dfrac{x-5\sqrt{x}}{\left(\sqrt{x}+5\right)\left(\sqrt{x}-5\right)}\right).\dfrac{\sqrt{x}-5}{\sqrt{x}+2}\)

\(\Rightarrow A=\dfrac{x+14\sqrt{x}-5+x-5\sqrt{x}}{\left(\sqrt{x}+5\right)\left(\sqrt{x}-5\right)}.\dfrac{\sqrt{x}-5}{\sqrt{x}+2}\)

\(\Rightarrow A=\dfrac{2x+9\sqrt{x}-5}{\left(\sqrt{x}+5\right)\left(\sqrt{x}-5\right)}.\dfrac{\sqrt{x}-5}{\sqrt{x}+2}\)

\(\Rightarrow A=\dfrac{2x+10\sqrt{x}-\sqrt{x}-5}{\left(\sqrt{x}+5\right)\left(\sqrt{x}+2\right)}\)

\(\Rightarrow A=\dfrac{2\sqrt{x}\left(\sqrt{x}+5\right)-\left(\sqrt{x}+5\right)}{\left(\sqrt{x}+5\right)\left(\sqrt{x}+2\right)}\)

\(\Rightarrow A=\dfrac{\left(2\sqrt{x}-1\right)\left(\sqrt{x}+5\right)}{\left(\sqrt{x}+5\right)\left(\sqrt{x}+2\right)}\)

\(\Rightarrow A=\dfrac{2\sqrt{x}-1}{\sqrt{x}+2}\)

24 tháng 8 2021

`a)sqrt{4+sqrt7}-sqrt{4-sqrt7}`

`=sqrt{(8+2sqrt7)/2}-sqrt{(8-2sqrt7)/2}`

`=sqrt{(7+2sqrt7+1)/2}-sqrt{(7-2sqrt7+1)/2}`

`=sqrt{(sqrt7+1)^2/2}-sqrt{(sqrt7-1)^2/2}`

`=(sqrt7+1)/sqrt2-(sqrt7-1)/sqrt2`

`=2/sqrt2=sqrt2`

`b)sqrt{4--sqrt15}-sqrt{4+sqrt15}`

`=sqrt{(8-2sqrt15)/2}-sqrt{(8+2sqrt15)/2}`

`=sqrt{(5-2sqrt{5.3}+3)/2}-sqrt{(5+2sqrt{5.3}+3)/2}`

`=sqrt{(sqrt5-sqrt3)^2/2}-sqrt{(sqrt5+sqrt3)^2/2}`

`=(sqrt5-sqrt3)/sqrt2-(sqrt5+sqrt3)/sqrt2`

`=(-2sqrt3)/sqrt2=-sqrt6`

`c)sqrt{2+sqrt3}+sqrt{2-sqrt3}`

`=sqrt{(4+2sqrt3)/2}+sqrt{(4-2sqrt3)/2}`

`=sqrt{(3+2sqrt3+1)/2}+sqrt{(3-2sqrt3+1)/2}`

`=sqrt{(sqrt3+1)^2/2}+sqrt{(sqrt3-1)^2/2}`

`=(sqrt3+1)/sqrt2+(sqrt3-1)/sqrt2`

`=(2sqrt3)/sqrt2=sqrt6`

`d)sqrt{9+sqrt17}-sqrt{9-sqrt17}`

`=sqrt{(18+2sqrt17)/2}-sqrt{(18-2sqrt17)/2}`

`=sqrt{(17+2sqrt17+1)/2}-sqrt{(17-2sqrt17+1)/2}`

`=sqrt{(sqrt17+1)^2/2}-sqrt{(sqrt17-1)^2/2}`

`=(sqrt17+1)/sqrt2-(sqrt17-1)/sqrt2`

`=2/sqrt2=sqrt2`

a: Ta có: \(\sqrt{4+\sqrt{7}}-\sqrt{4-\sqrt{7}}\)

\(=\dfrac{\sqrt{8+2\sqrt{7}}-\sqrt{8-2\sqrt{7}}}{\sqrt{2}}\)

\(=\dfrac{\sqrt{7}+1-\sqrt{7}+1}{\sqrt{2}}=\sqrt{2}\)

b: Ta có: \(\sqrt{4-\sqrt{15}}-\sqrt{4+\sqrt{15}}\)

\(=\dfrac{\sqrt{8-2\sqrt{15}}-\sqrt{8+2\sqrt{15}}}{\sqrt{2}}\)

\(=\dfrac{\sqrt{5}-\sqrt{3}-\sqrt{5}-\sqrt{3}}{\sqrt{2}}=-\sqrt{6}\)

20 tháng 6 2019

\(\sqrt{3-\sqrt{5}}\left(\sqrt{10}-\sqrt{2}\right)\left(3+\sqrt{5}\right)\)

\(=\sqrt{3-\sqrt{5}}.\sqrt{3+\sqrt{5}}.\left(\sqrt{5}-1\right).\sqrt{2}.\sqrt{3+\sqrt{5}}\)

\(=\sqrt{9-5}\left(\sqrt{5}-1\right)\sqrt{6+2\sqrt{5}}\)

\(=2\left(\sqrt{5}-1\right)\left(\sqrt{5}+1\right)\)

\(=2\left(5-1\right)\)

\(=8\)

1 tháng 10 2021

a) \(5\sqrt{\dfrac{1}{5}}+\dfrac{1}{3}\sqrt{45}+\dfrac{5-\sqrt{5}}{\sqrt{5}}=\sqrt{5}+\sqrt{5}+\dfrac{\sqrt{5}\left(\sqrt{5}-1\right)}{\sqrt{5}}=\sqrt{5}+\sqrt{5}+\sqrt{5}-1=-1+3\sqrt{5}\)

b) \(\sqrt{7-4\sqrt{3}}+\sqrt{\left(1+\sqrt{3}\right)^2}=\sqrt{\left(2-\sqrt{3}\right)^2}+1+\sqrt{3}=2-\sqrt{3}+1+\sqrt{3}=3\)

a: \(5\sqrt{\dfrac{1}{5}}+\dfrac{1}{3}\sqrt{45}+\dfrac{5-\sqrt{5}}{\sqrt{5}}\)

\(=\sqrt{5}+\sqrt{5}+\sqrt{5}-1\)

\(=3\sqrt{5}-1\)

b: \(\sqrt{7-4\sqrt{3}}+\sqrt{\left(\sqrt{3}+1\right)^2}\)

\(=2-\sqrt{3}+\sqrt{3}+1\)

=3

16 tháng 8 2021

\(\sqrt[3]{53\sqrt{5}+124}+\sqrt[3]{32\sqrt{5}-72}\)

\(=\sqrt[3]{\left(\sqrt{5}\right)^3+3.5.4+3.\sqrt{5}.4+4^3}+\sqrt[3]{\left(\sqrt{5}\right)^3-3.5.3+3.\sqrt{5}.3^2-3^3}\)

\(=\sqrt[3]{\left(\sqrt{5}+4\right)^3}+\sqrt[3]{\left(\sqrt{5}-3\right)^3}\)

\(=\sqrt{5}+4+\sqrt{5}-3\)

\(=2\sqrt{5}+1\)

16 tháng 8 2021

Ta có:

\(\left(\sqrt{5-3\sqrt{2}}+\sqrt{3\sqrt{2}-4}\right)^2=5-3\sqrt{2}+3\sqrt{2}-4+2\sqrt{5-3\sqrt{2}}\sqrt{3\sqrt{2}-4}\)

\(=1+2\sqrt{27\sqrt{2}-38}\)

Áp dụng vào bài toán t được

\(\dfrac{\sqrt{1+2\sqrt{27\sqrt{2}-38}}-\sqrt{5-3\sqrt{2}}}{\sqrt{3\sqrt{2}-4}}\)

\(=\dfrac{\sqrt{\left(\sqrt{5-3\sqrt{2}}+\sqrt{3\sqrt{2}-4}\right)^2}-\sqrt{5-3\sqrt{2}}}{\sqrt{3\sqrt{2}-4}}\)

\(=\dfrac{\sqrt{5-3\sqrt{2}}+\sqrt{3\sqrt{2}-4}-\sqrt{5-3\sqrt{2}}}{\sqrt{3\sqrt{2}-4}}=1\)

23 tháng 10 2016

a/ Đặt \(\hept{\begin{cases}\sqrt{3+\sqrt{5}}=a\\\sqrt{3-\sqrt{5}}=b\end{cases}}\)

Khi đó ta có a2 + b2 = 6; ab = 2; a + b = \(\sqrt{10}\) ; a - b = \(\sqrt{2}\); a2 - b2 = \(2\sqrt{5}\)

Ta có cái ban đầu

\(=\frac{a^2}{\sqrt{10}+a}-\frac{b^2}{\sqrt{10}+b}\)=

\(\frac{\sqrt{10}a^2+a^2b-\sqrt{10}b^2-ab^2}{10+\sqrt{10}a+\sqrt{10}b+ab}\)

\(=\frac{10\sqrt{2}+2\sqrt{2}}{10+10+2}=\frac{6\sqrt{2}}{11}\)

23 tháng 10 2016

Câu còn lại làm tương tự

31 tháng 8 2021

\(A=3\sqrt{2}+5\sqrt{8}-2\sqrt{50}\)

\(=3\sqrt{2}+10\sqrt{2}-10\sqrt{2}\)

\(=3\sqrt{2}\)

31 tháng 8 2021

\(B=\dfrac{1}{3+\sqrt{5}}+\dfrac{1}{3-\sqrt{5}}\)

\(=\dfrac{3-\sqrt{5}}{\left(3+\sqrt{5}\right)\left(3-\sqrt{5}\right)}+\dfrac{3+\sqrt{5}}{\left(3+\sqrt{5}\right)\left(3-\sqrt{5}\right)}\)

\(=\dfrac{3-\sqrt{5}+3+\sqrt{5}}{9-5}\)

\(=\dfrac{3}{2}\)