Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài này cũng dễ
Chuyển hết qua 1 vế ta được
a^2+4b^2+3c^2–2a–12b–6c >0
<=> (a–1)^2+(2b–3)^2+3(c–1)^2 >0
Vì bất đẳng thức cuối đúng
Nên cái đề
Bạn ghi thiếu điều kiện rồi là số thực dương
Ta có (x^2-2xy+y^2+2xy)/x-y
<=>[ (x-y)^2+2] / x-y
Tách ra làm 2 phân số
x-y+ (2/x-y)
Dùng cô-si cho 2 số dương
Thì biểu thức trên sẽ ≥ 2✓(x-y)(2/x-y)
= 2✓2
Vậy cái đề
Áp dụng BĐT cô-si, ta có:
\(\frac{1}{\left(x+1\right)}+\frac{1}{\left(y+1\right)}+\frac{1}{\left(z+1\right)}\ge3\)
\(\Leftrightarrow\frac{1}{\left(x+1\right)}\ge1-\frac{1}{\left(y+1\right)}+1-\frac{1}{\left(z+1\right)}\)
\(\Leftrightarrow\frac{y}{\left(y+1\right)}+\frac{z}{\left(z+1\right)}\ge3\sqrt{\left(\frac{yz}{\left(y+1\right)\left(z+1\right)}\right)}\)
Ta có:
\(\frac{1}{\left(x+1\right)}\ge3\sqrt{\frac{yz}{\left(x+1\right)\left(y+1\right)}}\)(1)
\(\Leftrightarrow\frac{1}{\left(y+1\right)}\ge3\sqrt{\left(\frac{xy}{\left(x+1\right)\left(z+1\right)}\right)}\)(2)
\(\Leftrightarrow\frac{1}{\left(z+1\right)}\ge3\sqrt{\left(\frac{xy}{\left(x+1\right)\left(y+1\right)}\right)}\)(3)
Từ (1); (2) và (3), ta có:
\(\frac{1}{\left(x+1\right)}+\frac{1}{\left(y+1\right)}+\frac{1}{\left(z+1\right)}\ge8\frac{xyz}{\left(x+1\right)\left(y+1\right)\left(z+1\right)}\)
\(\Rightarrow xyz\le\frac{1}{8}.\text{ dau }=\text{xay ra khi }x=y=z=\frac{1}{2}\)
\(a,x^2+4x=-3\Leftrightarrow x^2+4x+3=0\Leftrightarrow\left(x+1\right)\left(x+3\right)=0\)
\(\left[{}\begin{matrix}x=-1\\x=-3\end{matrix}\right.\)
\(b,3x^2+4x-4=0\Leftrightarrow3x^2+6x-2x-4=0\Leftrightarrow3x\left(x+2\right)-2\left(x+2\right)=0\Leftrightarrow\left(3x-2\right)\left(x+2\right)=0\)
\(\left[{}\begin{matrix}x=-2\\3x=2\end{matrix}\right.\)
\(\left[{}\begin{matrix}x=-2\\x=\frac{2}{3}\end{matrix}\right.\)
\(c,x^2+5x-6=0\Leftrightarrow\left(x-1\right)\left(x+6\right)=0\)
\(\left[{}\begin{matrix}x=1\\x=-6\end{matrix}\right.\)
\(d,x^2-6x=-9\Leftrightarrow x^2+6x+9=0\Leftrightarrow\left(x-3\right)^2=0\Leftrightarrow x-3=0\Leftrightarrow x=3\)
Đk: x>=-3
\(pt\Leftrightarrow4\left(x+3\right)=81x^4-18x^3-71x^2+8x+16-4x-12\)
\(\Leftrightarrow81x^4-18x^3-71x^2+4x+4=0\)
\(\Leftrightarrow81x^3\left(x-1\right)+63x^2\left(x-1\right)-8x\left(x-1\right)-4\left(x-1\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(81x^3+63x^2-8x-4\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(81x^3+18x^2+45x^2+10x-18x-4\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left[9x^2\left(9x+2\right)+5x\left(9x+2\right)-2\left(9x+2\right)\right]=0\)
\(\Leftrightarrow\left(x-1\right)\left(9x+2\right)\left(9x^2+5x-2\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(9x+2\right)\left[9\left(x+\frac{5}{18}\right)^2-\frac{97}{36}\right]=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=1\\x=\frac{-2}{9}\\x=\frac{-5+\sqrt{97}}{18}\\x=\frac{-5-\sqrt{97}}{18}\end{matrix}\right.\)(tmđk)
Thay vì cách làm dài bình phương 2 vế, ta có cách ngắn hơn như sau: ĐK: \(x\ge-3;9x^2-x-4\ge0\)
Phương trình tương đương:
\(9x^2=x+3+2\sqrt{x+3}+1=\left(\sqrt{x+3}+1\right)^2\)
\(\Leftrightarrow\left[{}\begin{matrix}3x=\sqrt{x+3}+1\\3x=-\left(\sqrt{x+3}+1\right)\end{matrix}\right.\). Đặt \(\sqrt{x+3}=a\ge0\)
\(\Rightarrow\left[{}\begin{matrix}3a^2-a-10=0\\3a^2+a-8=0\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}a=2\\a=\frac{-5}{3}\\a=...\\a=...\end{matrix}\right.\)
Từ đó suy ra x
Câu 1
ta có
phương trình tương đương
\(x+y+z+4-2\sqrt{x-2}-4\sqrt{y-3}-6\sqrt{z-5}=0\)
\(\left(x-2-2\sqrt{x-2}+1\right)+\left(y-3-4\sqrt{y-3}+4\right)+\left(z-5-6\sqrt{z-5}+9\right)=0\)
\(\left(\sqrt{x-2}-1\right)^2+\left(\sqrt{y-3}-2\right)^2+\left(\sqrt{z-5}-3\right)^2=0\)
Nhận thấy \(\begin{cases}\\\\\end{cases}\begin{cases}\left(\sqrt{x-2}-1\right)^2\ge0\\\left(\sqrt{y-3}-2\right)^2\ge0\\\left(\sqrt{z-5}-3\right)^2\ge0\end{cases}\)
vậy để thỏa mãn pt, ta cần cả 3 biểu thức trên bằng o hay x = 3 ; y = 7 ; z = 14
\(2\left(a^4+b^4\right)\ge\left(a+b\right)\left(a^3+b^3\right)\)
\(\Leftrightarrow\left(a-b\right)^2\left(a^2+ab+b^2\right)\ge0\)(đúng)
\(2\left(a^4+b^4\right)\ge\left(a+b\right)\left(a^3+b^3\right)\)
Mà: \(a+b\ge2\)
\(\Rightarrow2\left(a^4+b^4\right)\ge\left(a+b\right)\left(a^3+b^3\right)\ge2\left(a^3+b^3\right)\)
\(\Rightarrow a^4+b^4\ge a^3+b^3\)
=> ĐPCM