Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đề sai rồi vì `P>0AAx>=0,x ne 1/2` mà phải tìm để `P<=0` nên nhất thiết mẫu là `2sqrtx-1` mặt khác còn lý do nữa là `x ne 1/2` mà không phải là `1/4` nên mình vẫn băn khoăn nhưng lý do đầu có vẻ thuyết phục hơn và sửa lại là `x ne 1/4` nhé!
`|P|>=P`
Mà `|P|>=0`
`=>P<=0`
`<=>(sqrtx+2)/(2sqrtx-1)<=0`
Mà `sqrtx+2>=2>0AAx>=0`
`<=>2sqrtx-1<0`
`<=>2sqrtx<1`
`<=>sqrtx<1/2`
`<=>x<1/4`
Vậy với `0<=x<1/4` thì `|P|>=P.`
\(3.A=\dfrac{2\sqrt{x}+17}{\sqrt{x}+5}=\dfrac{2\left(\sqrt{x}+5\right)+7}{\sqrt{x}+5}\)\(=2+\dfrac{7}{\sqrt{x}+5}\)
\(\sqrt{x}+5\ge5=>2+\dfrac{7}{\sqrt{x}+5}\le2+\dfrac{7}{5}=3,4\)
dấu'=' xảy ra<=>x=0=>MaxA=3,4
Bài này ko phải tìm giá trị lớn hơn nhỏ hơn mà nó là tìm x để A thuộc Z bạn ơi
\(A=\dfrac{4x+2\sqrt{x}+2}{2\sqrt{x}+1}=\dfrac{2\sqrt{x}\left(2\sqrt{x}+1\right)+2}{2\sqrt{x}+1}=2\sqrt{x}+\dfrac{2}{2\sqrt{x}+1}\)
\(=2\sqrt{x}+1+\dfrac{2}{2\sqrt{x}+1}-1\ge2\sqrt{\left(2\sqrt{x}+1\right)\cdot\dfrac{2}{2\sqrt{x}+1}}-1=2\sqrt{2}-1\)
=> A \(\ge2\sqrt{2}-1\)
Dấu "=" xảy ra <=> \(2\sqrt{x}+1=\dfrac{2}{2\sqrt{x}+1}\)
<=> \(\left(2\sqrt{x}+1\right)^2=2\) <=> \(\left[{}\begin{matrix}2\sqrt{x}+1=2\\2\sqrt{x}+1=-2\left(loại\right)\end{matrix}\right.\)
<=> \(\sqrt{x}=\dfrac{1}{2}\) <=> \(x=\dfrac{1}{4}\)(tm)
Vậy minA = \(2\sqrt{2}-1\) khi x = 1/4
Ý 1 em tự giải
Ý 2:
Phương trình hoành độ giao điểm (P) và (d):
\(x^2=2x-m^2+9\Leftrightarrow x^2-2x+m^2-9=0\) (1)
(d) cắt (P) tại 2 điểm nằm về 2 phía trục tung khi và chỉ khi (1) có 2 nghiệm phân biệt trái dấu
\(\Leftrightarrow ac< 0\)
\(\Leftrightarrow m^2-9< 0\)
\(\Leftrightarrow m^2< 9\)
\(\Rightarrow-3< m< 3\)
6:
1: BH=căn 15^2-12^2=9cm
BC=15^2/9=25cm
AC=căn 25^2-15^2=20cm
C ABC=15+20+25=60cm
XétΔHAB vuông tại H có sin BAH=BH/AB=9/15=3/5
nên góc BAH=37 độ
2: ΔABC vuông tại A có AH là đường cao
nên CA^2=CH*CB
ΔCAH vuông tại H có HF là đường cao
nên CF*CA=CA^2=CH*CB
3: Xét tứ giác AFHB có
HF//AB
góc AFH=90 độ
=>AFHB là hình thang vuông
Phương trình hoành độ giao điểm:
\(x^2=2\left(m-1\right)x-m+2\Leftrightarrow x^2-2\left(m-1\right)x+m-2=0\) (1)
a.
(d) cắt (P) tại 2 điểm nằm về 2 phía trục tung khi và chỉ khi (1) có 2 nghiệm pb trái dấu
\(\Leftrightarrow ac=m-2< 0\)
\(\Rightarrow m< 2\)
b.
Xét (1), ta có \(\Delta'=\left(m-1\right)^2-\left(m-2\right)=m^2-3m+3=\left(m-\dfrac{3}{2}\right)^2+\dfrac{3}{4}>0;\forall m\)
\(\Rightarrow\left(1\right)\) có 2 nghiệm pb với mọi m
Hay (d) luôn cắt (P) tại 2 điểm pb với mọi m
Bài 5:
a: \(=\dfrac{a+2\sqrt{a}+a-2\sqrt{a}}{a-4}\cdot\dfrac{a-4}{2\sqrt{a}}=\dfrac{2a}{2\sqrt{a}}=\sqrt{a}\)
b: Để A-2>0 thì căn a-2>0
=>căn a>2
=>a>4
c: Để 4/A+1 là số nguyên thì \(\sqrt{a}+1\inƯ\left(4\right)\)
=>\(\sqrt{a}+1\in\left\{1;2;4\right\}\)
=>\(a\in\left\{1;9\right\}\)
48.
Gọi phương trình (d) có dạng: \(y=kx+b\)
Do (d) qua N nên: \(-2=k.\left(-1\right)+b\Rightarrow b=k-2\)
Hay pt (d) có dạng: \(y=kx+k-2\)
b.
Phương trình hoành độ giao điểm (d) và (P):
\(-x^2=kx+k-2\Leftrightarrow x^2+kx+k-2=0\) (1)
Xét (1), ta có \(\Delta=k^2-4\left(k-2\right)=\left(k-2\right)^2+4>0;\forall k\)
\(\Rightarrow\left(1\right)\) luôn có 2 nghiệm pb với mọi k
Hay (d) luôn cắt (P) tại 2 điểm A, B với mọi k
Do A; B thuộc (d) nên: \(\left\{{}\begin{matrix}y_1=kx_1+k-2\\y_2=kx_2+k-2\end{matrix}\right.\)
Đồng thời theo định lý Viet: \(x_1+x_2=-k\)
\(\Rightarrow S=x_1+x_2+y_1+y_2=-k+k\left(x_1+x_2\right)+2k-4=-k^2+k-4\)
\(\Rightarrow S=-\left(k-\dfrac{1}{2}\right)^2-\dfrac{15}{4}\le-\dfrac{15}{4}\)
Dáu "=" xảy ra khi \(k-\dfrac{1}{2}=0\Rightarrow k=\dfrac{1}{2}\)
49.
Ý đầu em tự giải
Ý 2:
Phương trình hoành độ giao điểm (d) và (P):
\(x^2=mx-2m+4\Leftrightarrow x^2-mx+2m-4=0\) (1)
Xét (1), ta có \(\Delta=m^2-4\left(2m-4\right)=\left(m-4\right)^2\ge0;\forall m\)
Để (d) cắt (P) tại 2 điểm pb hay (1) có 2 nghiệm pb \(\Rightarrow\Delta>0\Rightarrow m\ne4\)
Khi đó theo định lý Viet: \(\left\{{}\begin{matrix}x_1+x_2=m\\x_1x_2=2m-4\end{matrix}\right.\)
Đặt \(A=x_1^2+x_2^2=\left(x_1+x_2\right)^2-2x_1x_2\)
\(A=m^2-2\left(2m-4\right)=m^2-4m+8\)
\(A=\left(m-2\right)^2+4\ge4\)
\(\Rightarrow A_{min}=4\) khi \(m-2=0\Rightarrow m=2\) (thỏa)