K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 10 2017

Gọi SH là đường cao của hình chóp, có SH=\(\dfrac{a\sqrt{2}}{2}\) \(\Rightarrow\)\(\widehat{SAH}=45^o\)

Đặt MN=x (x>0), có M'H=\(\dfrac{x\sqrt{2}}{2}\)

Có AMM' là tam giác vuông cân nên AM'=MM' = \(\dfrac{a\sqrt{2}}{2}-\dfrac{x\sqrt{2}}{2}\)

\(V_{MNPQ.M'N'P'Q'}=x^2\left(\dfrac{a\sqrt{2}}{2}-\dfrac{x\sqrt{2}}{2}\right)\)

Giả sử cho a=1 ta có \(V=\dfrac{-x^3\sqrt{2}}{2}+\dfrac{x^2\sqrt{2}}{2}\)

Đạo hàm ta đc \(\dfrac{-3\sqrt{2}x^2}{2}+\sqrt{2}x\Leftrightarrow\left[{}\begin{matrix}x=0\\x=\dfrac{2}{3}\end{matrix}\right.\)

Vậy MN=\(\dfrac{2a}{3}\)

15 tháng 10 2023

\(g'\left(x\right)=\left(-2x\right)'\cdot f'\left(-2x\right)\)

\(=-2\cdot f'\left(-2x\right)\)

\(=-2\left(-2x^2-4x\right)\)

\(=4x^2+8x\)

\(g''\left(x\right)=4\cdot2x+8=8x+8\)

g'(x)=0

=>4x(x+2)=0

=>x=0 hoặc x=-2

Khi x=0 thì \(g''\left(x\right)=8\cdot0+8=8\)>0

=>Khi x=0 thì g(x) đạt giá trị cực đại

Khi x=-2 thì \(g''\left(x\right)=8\cdot\left(-2\right)+8=-8< 0\)

=>Khi x=-2 thì g(x) không đạt giá trị cực đại

Vậy: G(x) đạt giá trị cực đại tại x=0

NV
13 tháng 1 2022

44.

\(AB=\dfrac{BD}{\sqrt{2}}=2a\sqrt{2}\)

Gọi O là giao điểm AC và BD \(\Rightarrow AO\perp BD\Rightarrow BD\perp\left(A'AO\right)\)

\(\Rightarrow\widehat{A'OA}\) là góc giữa (A'BD) và (ABCD)

\(\Rightarrow\widehat{A'OA}=60^0\)

\(\Rightarrow A'A=AO.tan60^0=\dfrac{BD}{2}.tan60^0=2a\sqrt{3}\)

\(\Rightarrow V=A'A.AB^2=16\sqrt{3}a^3\)

NV
13 tháng 1 2022

Hình vẽ bài 44:

undefined

NV
29 tháng 6 2021

Không ai vẽ hình khi làm bài mặt cầu Oxyz đâu bạn, chỉ cần đại số hóa nó là được.

Gọi I là tâm mặt cầu, do mặt cầu tiếp xúc (Q) tại H nên \(IH\perp\left(Q\right)\)

\(\Rightarrow\) Đường thẳng IH nhận vtpt của (Q) là 1 vtcp

\(\Rightarrow\) IH nhận (1;1;-1) là 1 vtcp

Phương trình IH: \(\left\{{}\begin{matrix}x=1+t\\y=-1+t\\z=-t\end{matrix}\right.\)

I vừa thuộc IH vừa thuộc (P) nên là giao điểm của IH và (P)

\(\Rightarrow\) Tọa độ I thỏa mãn:

\(2\left(1+t\right)+\left(-1+t\right)+\left(-t\right)-3=0\)

\(\Rightarrow t=1\Rightarrow I\left(2;0;-1\right)\)

\(\Rightarrow\overrightarrow{IH}=\left(-1;-1;1\right)\Rightarrow R=IH=\sqrt{3}\)

Phương trình (S):

\(\left(x-2\right)^2+y^2+\left(z+1\right)^2=3\)

10 tháng 4 2021

31/

\(3z^2-2z+27=0\)

\(\Delta'=\left(-1\right)^2-3.27=1-3.27=-80\)

\(\Delta'\) có 2 căn bậc 2 là \(\pm4i\sqrt{5}\)

\(\Rightarrow\left\{{}\begin{matrix}z_1=\dfrac{1+4i\sqrt{5}}{3}\\z_2=\dfrac{1-4i\sqrt{5}}{3}\end{matrix}\right.\Rightarrow\left|z_1\right|=\left|z_2\right|=\sqrt{\left(\dfrac{1}{3}\right)^2+\left(\dfrac{4\sqrt{5}}{3}\right)^2}=3\)

\(\Rightarrow z_1\left|z_2\right|+z_2\left|z_1\right|=1+4i\sqrt{5}+1-4i\sqrt{5}=2\) => A

32/ \(\Delta'=4-29=-25\Rightarrow\left\{{}\begin{matrix}z_1=-2+5i\\z_2=-2-5i\end{matrix}\right.\Rightarrow\left|z_1\right|=\left|z_2\right|=\sqrt{2^2+5^2}=\sqrt{29}\)

\(\Rightarrow\left|z_1\right|^4+\left|z_2\right|^4=2.\sqrt{29^4}=1682\) => B

33/ \(\Delta=1-12=-11\Rightarrow\left\{{}\begin{matrix}z_1=\dfrac{1+i\sqrt{11}}{6}\\z_2=\dfrac{1-i\sqrt{11}}{6}\end{matrix}\right.\Rightarrow\left|z_1\right|=\left|z_2\right|=\sqrt{\left(\dfrac{1}{6}\right)^2+\left(\dfrac{\sqrt{11}}{6}\right)^2}=\dfrac{\sqrt{3}}{3}\)

\(\Rightarrow\left|z_1\right|+\left|z_2\right|=\dfrac{2\sqrt{3}}{3}\) => D

34/ \(\Delta=1-4.3.2=-23\Rightarrow\left\{{}\begin{matrix}z_1=\dfrac{1-i\sqrt{23}}{6}\\z_2=\dfrac{1+i\sqrt{23}}{6}\end{matrix}\right.\Rightarrow\left|z_1\right|=\left|z_2\right|=\sqrt{\dfrac{1}{36}+\dfrac{23}{36}}=\dfrac{\sqrt{6}}{3}\)

\(\Rightarrow T=2.\left(\dfrac{\sqrt{6}}{3}\right)^2=\dfrac{4}{3}\) => C

10 tháng 4 2021

Tks bn nhiều

NV
16 tháng 1

Câu 4 đề 1:

Biến đổi miền D: \(x^2+y^2\le2x\Leftrightarrow x^2-2x+1+y^2\le1\)

\(\Leftrightarrow\left(x-1\right)^2+y^2\le1\)

Đặt \(\left\{{}\begin{matrix}x-1=r.cos\varphi\\y=r.sin\varphi\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=1+r.cos\varphi\\y=r.sin\varphi\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}0\le r\le1\\0\le\varphi\le2\pi\end{matrix}\right.\)

\(I=\int\limits^{2\pi}_0d\varphi\int\limits^1_0\left(2+r.cos\varphi\right).rdr=\int\limits^{2\pi}_0d\varphi\int\limits^1_0\left(2r+r^2.cos\varphi\right)dr\)

\(=\int\limits^{2\pi}_0d\varphi.\left(r^2+\dfrac{r^3}{3}cos\varphi\right)|^1_0=\int\limits^{2\pi}_0\left(1+\dfrac{1}{3}cos\varphi\right)d\varphi=2\pi\)

Câu 4 đề 2: sao câu này người ta ko cho biết chiều tính tích phân nhỉ? Coi như tính theo chiều dương đi.

\(\left\{{}\begin{matrix}P=x^2+xy\\Q=x+2xy\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}P'_y=x\\Q'_x=2y+1\end{matrix}\right.\)

Miền lấy tích phân là miền kín, áp dụng định lý Green:

\(I=\int\limits\int\limits^{ }_D\left(Q'_x-P'_y\right)dxdy=\int\limits\int\limits^{ }_D\left(2y-x+1\right)dxdy\)

Pt AC có dạng \(x=1\) và pt \(BC\) có dạng \(x=3-y\)

Chiếu lên Oy \(\Rightarrow\left\{{}\begin{matrix}0\le y\le2\\1\le x\le3-y\end{matrix}\right.\)

\(\Rightarrow I=\int\limits^2_0dy\int\limits^{3-y}_1\left(2y-x+1\right)dx\)

\(=\int\limits^2_0dy\left(\left(2y+1\right)x-\dfrac{x^2}{2}\right)|^{3-y}_1\)

\(=\int\limits^2_0\left(-\dfrac{5}{2}y^2+6y-2\right)dy=\dfrac{4}{3}\)

NV
1 tháng 11 2021

\(y'=\dfrac{\left(-2x+2\right)\left(x-3\right)-\left(-x^2+2x+c\right)}{\left(x-3\right)^2}=\dfrac{-x^2+6x-6-c}{\left(x-3\right)^2}\)

\(\Rightarrow\) Cực đại và cực tiểu của hàm là nghiệm của: \(-x^2+6x-6-c=0\) (1)

\(\Delta'=9-\left(6+c\right)>0\Rightarrow c< 3\)

Gọi \(x_1;x_2\) là 2 nghiệm của (1) \(\Rightarrow\left\{{}\begin{matrix}-x_1^2+6x_1-6=c\\-x_2^2+6x_2-6=c\end{matrix}\right.\)

\(\Rightarrow m-M=\dfrac{-x_1^2+2x_1+c}{x_1-3}-\dfrac{-x_2^2+2x_2+c}{x_2-3}=4\)

\(\Leftrightarrow\dfrac{-2x_1^2+8x_1-6}{x_1-3}-\dfrac{-2x_2^2+8x_2-6}{x_2-3}=4\)

\(\Leftrightarrow2\left(1-x_1\right)-2\left(1-x_2\right)=4\)

\(\Leftrightarrow x_2-x_1=2\)

Kết hợp với Viet: \(\left\{{}\begin{matrix}x_2-x_1=2\\x_1+x_2=6\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x_1=2\\x_2=4\end{matrix}\right.\)

\(\Rightarrow c=2\)

Có 1 giá trị nguyên

30 tháng 11 2023

\(A=log_m\left(8m\right)=log_mm+log_m8\)

\(=1+log_m8\)

\(=1+\dfrac{1}{log_8m}=1+\dfrac{1}{log_{2^3}m}=1+\dfrac{1}{\dfrac{1}{3}\cdot log_2m}\)

\(=1+\dfrac{1}{\dfrac{1}{3}a}=1+1:\dfrac{a}{3}=1+\dfrac{3}{a}=\dfrac{a+3}{a}\)

=>Chọn A