K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a) Thay m=2 vào pt, ta được:

\(x^2-3x+2=0\)

a=1; b=-3; c=2

Vì a+b+c=0 nên phương trình có hai nghiệm phân biệt là:

\(x_1=1;x_2=\dfrac{c}{a}=\dfrac{2}{1}=2\)

AH
Akai Haruma
Giáo viên
12 tháng 7 2023

Bạn nên chịu khó gõ đề ra khả năng được giúp sẽ cao hơn.

13 tháng 7 2023

Câu h của em đây nhé

h, ( 1 + \(\dfrac{3-\sqrt{3}}{\sqrt{3}-1}\)).(1 - \(\dfrac{3+\sqrt{3}}{\sqrt{3}+1}\))

\(\dfrac{\sqrt{3}-1+3-\sqrt{3}}{\sqrt{3}-1}\).\(\dfrac{\sqrt{3}+1-3-\sqrt{3}}{\sqrt{3}+1}\)

\(\dfrac{2}{\sqrt{3}-1}\).\(\dfrac{-2}{\sqrt{3}+1}\)

\(\dfrac{-4}{2}\)

= -2

4:

a: góc OBA+góc OCA=180 độ

=>OBAC nội tiếp

b: Xét (O) có

AB,AC là tiếp tuyến

=>AB=AC

mà OB=OC

nên OA là trung trực của BC

=>OA vuông góc BC tại H

=>AB^2=AH*AO

 

21 tháng 7 2021

a, Xét tam giác ABC vuông tại A, đường cao AH

Áp dụng định lí Pytago cho tam giác ABC vuông tại A

\(BC^2=AB^2+AC^2=\dfrac{81}{4}+36=\dfrac{225}{4}\Rightarrow BC=\dfrac{15}{2}\)cm 

* Áp dụng hệ thức : \(AB^2=BH.BC\Rightarrow BH=\dfrac{AB^2}{BC}=\dfrac{\dfrac{81}{4}}{\dfrac{15}{2}}=\dfrac{27}{10}\)cm 

=> \(CH=BC-BH=\dfrac{15}{2}-\dfrac{27}{10}=\dfrac{24}{5}\)cm 

* Áp dụng hệ thức : \(AH.BC=AB.AC\Rightarrow AH=\dfrac{AB.AC}{BC}\)

\(=\dfrac{4,5.6}{\dfrac{15}{2}}=\dfrac{18}{5}\)cm 

21 tháng 7 2021

tam giác ABC vuông tại A nên áp dụng Py-ta-go

\(\Rightarrow BC^2=AB^2+AC^2=\left(4,5\right)^2+6^2=\dfrac{225}{4}\Rightarrow BC=\dfrac{15}{2}=7,5\left(cm\right)\)

tam giác ABC vuông tại A có đường cao AH nên áp dụng hệ thức lượng

\(\Rightarrow AB^2=BH.BC\Rightarrow BH=\dfrac{AB^2}{BC}=\dfrac{\left(4,5\right)^2}{7,5}=\dfrac{27}{10}=2,7\left(cm\right)\)

tam giác ABC vuông tại A có đường cao AH nên áp dụng hệ thức lượng

\(\Rightarrow AC^2=CH.BC\Rightarrow CH=\dfrac{AC^2}{BC}=\dfrac{6^2}{7,5}=\dfrac{24}{5}=4,8\left(cm\right)\)

12 tháng 2 2022

E tk nha:

undefined

14 tháng 12 2021

\(1,ĐK:x\ge2\\ PT\Leftrightarrow\sqrt{3x-6}+x-2-\left(\sqrt{2x-3}-1\right)=0\\ \Leftrightarrow\dfrac{3\left(x-2\right)}{\sqrt{3x-6}}+\left(x-2\right)-\dfrac{2\left(x-2\right)}{\sqrt{2x-3}+1}=0\\ \Leftrightarrow\left(x-2\right)\left(\dfrac{3}{\sqrt{3x-6}}-\dfrac{2}{\sqrt{2x-3}+1}+1\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=2\left(tm\right)\\\dfrac{3}{\sqrt{3x-6}}-\dfrac{2}{\sqrt{2x-3}+1}+1=0\left(1\right)\end{matrix}\right.\)

Với \(x>2\Leftrightarrow-\dfrac{2}{\sqrt{2x-3}+1}>-\dfrac{2}{1+1}=-1\left(3x-6\ne0\right)\)

\(\Leftrightarrow\left(1\right)>0-1+1=0\left(vn\right)\)

Vậy \(x=2\)

14 tháng 12 2021

\(2,ĐK:x\ge-1\)

Đặt \(\left\{{}\begin{matrix}\sqrt{x+1}=a\\\sqrt{x^2-x+1}=b\end{matrix}\right.\left(a,b\ge0\right)\Leftrightarrow a^2+b^2=x^2+2\)

\(PT\Leftrightarrow2a^2+2b^2-5ab=0\\ \Leftrightarrow\left(a-2b\right)\left(2a-b\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}a=2b\\b=2a\end{matrix}\right.\)

Với \(a=2b\Leftrightarrow x+1=4x^2-4x+4\left(vn\right)\)

Với \(b=2a\Leftrightarrow4x+4=x^2-x+1\Leftrightarrow x^2-5x-3=0\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{5+\sqrt{37}}{2}\left(tm\right)\\x=\dfrac{5-\sqrt{37}}{2}\left(tm\right)\end{matrix}\right.\)

Vậy ...

Bài 2:

a: Thay x=-2 và y=-1 vào (d), ta được:

-2(m+1)+m+2=-1

=>-2m-2+m+2=-1

=>-m=-1

=>m=1

b: (d): y=2x+3

Tọa độ A là:

y=0 và 2x+3=0

=>x=-3/2 và y=0

=>OA=1,5

Tọa độ B là:

x=0 và y=2*0+3=3

=>OB=3

\(AB=\sqrt{1.5^2+3^2}=1.5\sqrt{5}\)

=>\(C=1.5+3+1.5\sqrt{5}=1.5\sqrt{5}+4.5\)

\(S=\dfrac{1}{2}\cdot OA\cdot OB=2.25\)

Câu 5: B

Câu 6: C

Câu 7: A

Câu 8: A