Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{x+1}{2x-2}-\frac{x-1}{2x+2}=\frac{2}{x^2-1}\)
\(ĐKXĐ:x\ne\pm1\)
\(\Leftrightarrow\frac{\left(x+1\right)\left(2x+2\right)}{4\left(x^2-1\right)}-\frac{\left(x-1\right)\left(2x-2\right)}{4\left(x^2-1\right)}=\frac{8}{4\left(x^2-1\right)}\)
\(\Leftrightarrow\left(x+1\right)\left(2x+2\right)-\left(x-1\right)\left(2x-2\right)=8\)
\(\Leftrightarrow2x^2+2x+2x+2-2x^2+2x+2x-2=8\)
\(\Leftrightarrow8x=8\)
\(\Leftrightarrow x=1\)(0 TM)
Vậy phương trình trên vô nghiệm
#hoktot<3#
\(\frac{2x-1}{x}+\frac{3-x}{4}=2\)
\(ĐKXĐ:x\ne0\)
\(MTC:4x\)
\(\frac{4\left(2x-1\right)}{4x}+\frac{x\left(3-x\right)}{4x}=\frac{8x}{4x}\)
\(\Rightarrow4\left(2x-1\right)+x\left(x-3\right)=8x\)
\(\Leftrightarrow8x-4+x^2-3x=8x\)
\(\Leftrightarrow8x-4+x^2-3x-8x=0\)
\(\Leftrightarrow x^2-3x-4=0\)
\(\Leftrightarrow x^2-4x+x-4=0\)
\(\Leftrightarrow\left(x^2-4x\right)+\left(x-4\right)=0\)
\(\Leftrightarrow x\left(x-4\right)+\left(x-4\right)=0\)
\(\Leftrightarrow\left(x-4\right)\left(x+1\right)=0\)
Hoặc\(\hept{\begin{cases}x-4=0\\x+1=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=4\left(N\right)\\x=-1\left(N\right)\end{cases}}}\)
Vậy tập nghiệp của pt là \(S=\left\{-1;4\right\}\)
ĐKXĐ: \(x\notin\left\{1;-1\right\}\)
Ta có: \(\dfrac{x-3}{x+1}=\dfrac{x^2}{x^2-1}\)
\(\Leftrightarrow\dfrac{\left(x-3\right)\left(x-1\right)}{\left(x+1\right)\left(x-1\right)}=\dfrac{x^2}{\left(x-1\right)\left(x+1\right)}\)
Suy ra: \(x^2-4x+3-x^2=0\)
\(\Leftrightarrow-4x=-3\)
hay \(x=\dfrac{3}{4}\)(thỏa ĐK)
Vậy: \(S=\left\{\dfrac{3}{4}\right\}\)
\(\dfrac{x+2}{x-2}-\dfrac{2}{x^2-2x}=\dfrac{1}{x}\left(đk:x\ne0,x\ne2\right)\)
\(\Leftrightarrow\dfrac{\left(x+2\right)x-2}{x\left(x-2\right)}=\dfrac{x^2-2x}{x\left(x-2\right)}\)
\(\Leftrightarrow x^2+2x-2=x^2-2x\)
\(\Leftrightarrow4x=2\Leftrightarrow x=\dfrac{1}{2}\)
Cho mình sửa lại nhé:
\(\dfrac{x+2}{x-2}-\dfrac{2}{x^2-2x}=\dfrac{1}{x}\left(đk:x\ne0,x\ne2\right)\)
\(\Leftrightarrow\dfrac{\left(x+2\right)x-2}{x\left(x-2\right)}=\dfrac{x-2}{x\left(x-2\right)}\)
\(\Leftrightarrow x^2+2x-2=x-2\)
\(\Leftrightarrow x^2+x=0\)
\(\Leftrightarrow x\left(x+1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\left(ktm\right)\\x=-1\left(tm\right)\end{matrix}\right.\)
\(\Leftrightarrow2\left(x+1\right)^3=56\Leftrightarrow\left(x+1\right)^3=28\Leftrightarrow\)
Hình hiển thị bị lỗi rồi. Bạn nên gõ hẳn đề ra để được hỗ trợ tốt hơn nhé.
d) \(\left|2x-3\right|=x-3\)
TH1: \(\left|2x-3\right|=2x-3\) với \(2x-3\ge0\Leftrightarrow x\ge\dfrac{3}{2}\)
Pt trở thành:
\(2x-3=x-3\) (ĐK: \(x\ge\dfrac{3}{2}\) )
\(\Leftrightarrow2x-x=-3+3\)
\(\Leftrightarrow x=0\left(ktm\right)\)
TH2: \(\left|2x-3\right|=-\left(2x-3\right)\) với \(2x-3< 0\Leftrightarrow x< \dfrac{3}{2}\)
Pt trở thành:
\(-\left(2x-3\right)=x-3\)
\(\Leftrightarrow-2x+3=x-3\)
\(\Leftrightarrow-2x-x=-3-3\)
\(\Leftrightarrow-3x=-6\)
\(\Leftrightarrow x=-\dfrac{6}{-3}=2\left(ktm\right)\)
Vậy Pt vô nghiệm
`(x+3)(x^2-5x+8)=(x+3).x^2`
`<=>(x+3)(x^2-5x+8-x^2)=0`
`<=>(x+3)(8-5x)=0`
`<=>` \(\left[ \begin{array}{l}x+3=0\\8-5x=0\end{array} \right.\)
`<=>` \(\left[ \begin{array}{l}x=\dfrac85\\x=-3\end{array} \right.\)
Vậy `S={-3,8/5}`
`(x+3)(x^2-5x+8)=(x+3).x^2`
`<=>(x+3)(x^2-5x+8-x^2)=0`
`<=>(x+3)(-5x+8)=0`
\(\Leftrightarrow\left[{}\begin{matrix}x+3=0\\-5x+8=0\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=-3\\x=\dfrac{8}{5}\end{matrix}\right.\)
Vậy `S={-3;8/5}`.
\(=x^2-6x+8-x^2+2x-1=-4x+7\)