Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Chuẩn chuẩn. :)
\(A=\frac{1}{4^2}+\frac{1}{6^2}+...+\frac{1}{160^2}=\frac{1}{4}\left(\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{80^2}\right)\)
+) \(\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{80^2}>\frac{1}{4}+\left(\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{80}.\frac{1}{81}\right)\)
\(=\frac{1}{4}+\left(\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{80}-\frac{1}{81}\right)\)
\(=\frac{1}{4}+\frac{1}{3}-\frac{1}{81}>\frac{1}{4}+\frac{1}{3}-\frac{1}{12}=\frac{1}{2}\)
=> \(A=\frac{1}{4}\left(\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{80^2}\right)>\frac{1}{4}.\frac{1}{2}=\frac{1}{8}\)
+) \(\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{80^2}< \frac{1}{4}+\left(\frac{1}{3.2}+\frac{1}{4.3}+...+\frac{1}{80.79}\right)\)
\(=\frac{1}{4}+\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{79}-\frac{1}{80}\right)\)
\(=\frac{1}{4}+\frac{1}{2}-\frac{1}{80}< \frac{3}{4}\)
=> \(A=\frac{1}{4}\left(\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{80^2}\right)< \frac{1}{4}.\frac{3}{4}=\frac{3}{16}\)
Bài làm
\(\left(1-\frac{1}{2}\right).\left(1-\frac{1}{3}\right).\left(1-\frac{1}{4}\right).....\left(1-\frac{1}{100}\right)\)
= \(\left(\frac{2}{2}-\frac{1}{2}\right).\left(\frac{3}{3}-\frac{1}{3}\right).\left(\frac{4}{4}-\frac{1}{4}\right).....\left(\frac{100}{100}-\frac{1}{100}\right)\)
= \(\frac{1}{2}.\frac{2}{3}.\frac{3}{4}.....\frac{99}{100}\)
= \(\frac{1.2.3.....99}{2.3.4.....100}\)
= \(\frac{1.1.1.....1}{1.1.1.....100}\)
= \(\frac{1}{100}\)
~ Triệt tiêu trên tử dưới mẫu là được ~
# Chúc bạn học tốt #
cảm ơn bạn THẦN CHẾT nha!!!!!!!!
có bài nào khó thì bạn giải giúp mk nhé
\(A=1+2\left(1+1\right)+3\left(2+1\right)+4\left(3+1\right)+...+100.\left(99+1\right).\)
\(A=1+1.2+2+2.3+3+3.4+4+...+99.100+100\)
\(A=\left(1+2+3+4+...+100\right)+\left(1.2+2.3+3.4+...+99.100\right)\)
\(B=1+2+3+4+...+100=\frac{100\left(1+100\right)}{2}=5050\)
\(C=1.2+2.3+3.4+...+99.100\)
\(3C=1.2.3+2.3.3+3.4.3+...+99.100.3\)
\(3C=1.2.3+2.3\left(4-1\right)+3.4\left(5-2\right)+...+99.100\left(101-98\right)\)
\(3C=1.2.3+2.3.4-1.2.3+3.4.5-2.3.4+...+99.100.101-98.99.100\)
\(3C=99.100.101\Rightarrow C=\frac{99.100.101}{3}=33.100.101=333300\)
\(A=B+C=5050+333300=338350\)
Cho mk hỏi nha !!! Có phải đầu bài là : Cho A = 1/2^2 + 1/3^2 + ... + 1/2013^2 . Chứng minh A<1 ko ???