Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1)
\(\hept{\begin{cases}\left(\sqrt{2}+\sqrt{3}\right)x-y\sqrt{2}=\sqrt{2}\\\left(\sqrt{2}+\sqrt{3}\right)x+y\sqrt{3}=-\sqrt{3}\end{cases}\Leftrightarrow\hept{\begin{cases}-y\left(\sqrt{2}+\sqrt{3}\right)=\sqrt{2}+\sqrt{3}\\\left(\sqrt{2}+\sqrt{3}\right)x+y\sqrt{3}=-\sqrt{3}\end{cases}}}\)
\(\Leftrightarrow\hept{\begin{cases}x=0\\y=-1\end{cases}}\)
a ) \(HPT\Leftrightarrow\hept{\begin{cases}5x-y=4\left(1\right)\\3x-y=5\left(2\right)\end{cases}}\)
Lấy (1) trừ (2) :
\(\Rightarrow2x=-1\Rightarrow x=-\frac{1}{2}\)
Thay \(x=-\frac{1}{2}\) vào (1) : \(y=5x-4=5.-\frac{1}{2}-4=-\frac{13}{2}\)
Vậy HPT có nghiệm \(\left(x,y\right)=\left(-\frac{1}{2},-\frac{13}{2}\right)\)
b ) \(\hept{\begin{cases}\sqrt{3}x-\sqrt{2}y=1\\\sqrt{2}x+\sqrt{3}y=\sqrt{3}\end{cases}\Leftrightarrow\hept{\begin{cases}\sqrt{6}x-2y=\sqrt{2}\left(1\right)\\\sqrt{6}x+3y=3\left(2\right)\end{cases}}}\)
Lấy (2 ) -(1) thu được :
\(5y=3-\sqrt{2}\Rightarrow y=\frac{3-\sqrt{2}}{5}\)
Thay giá trị y trên vào (1) : \(x=\frac{2y+\sqrt{2}}{\sqrt{6}}=\frac{\sqrt{6}+\sqrt{3}}{5}\)
Vậy ......
\(\hept{\begin{cases}3x-y=3\sqrt{x+y}\\3x+y=3\sqrt{x-y}\end{cases}\left(x-y;x+y\ge0\right)}\)
Đặt : \(\hept{\begin{cases}x+y=u\\x-y=v\\2x=u+v\end{cases}\left(u;v;x\ge0\right)}\)thì pt tương đương :
\(\hept{\begin{cases}u+2v=3\sqrt{u}\\v+2u=3\sqrt{v}\end{cases}}\)
\(< =>\hept{\begin{cases}u^2+4v^2+4uv=9u\\v^2+4u^2+4uv=9v\end{cases}}\)
\(< =>\hept{\begin{cases}u^2-9u+\left(4v^2+4uv\right)=0\\v^2-9v+\left(4u^2+4uv\right)=0\end{cases}}\)
Đến đây bạn giải delta và xét theo đk là xong
\(\hept{\begin{cases}x^2-2y^2=-1\left(1\right)\\2x^3-y^3=2y-x\end{cases}}\)
\(\Rightarrow\left(2x^3-y^2\right)\cdot1=\left(x^2-2y^2\right)\left(2y-x\right)\)(nhân chéo 2 vế để cùng bậc)
\(\Rightarrow2x^3-y^3=2x^2y-x^3-4y^3+2xy^2\)
\(\Rightarrow3x^3-2x^2y-2xy^2+3y^3=0\)
\(\Rightarrow3\left(x+y\right)\left(x^2-xy+y^2\right)-2xy\left(x+y\right)=0\)
\(\Rightarrow\left(x+y\right)\left(3x^2-5xy+3y^2\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x+y=0\\x=y=0\end{cases}\Rightarrow x=-y}\)
Thay x=-y vào (1): \(x^2-2x^2=-1\Rightarrow x^2=1\Rightarrow\orbr{\begin{cases}x=1\Rightarrow y=-1\\x=-1\Rightarrow y=1\end{cases}}\)
Đúng thì làm vậy.
Ta có:
\(\sqrt[3]{x-y}=\sqrt{x-y}\)
\(\Leftrightarrow\sqrt[3]{x-y}\left(1-\sqrt[6]{x-y}\right)=0\)
Dễ thấy x = y không phải là nghiệm
\(\Rightarrow1=\sqrt[6]{x-y}\)
\(\Leftrightarrow1=x-y\)
\(\Leftrightarrow x=1+y\)
Thế vô PT còn lại ta được
\(\sqrt[3]{2y+1}=\sqrt{2y-3}\)
\(\Leftrightarrow\left(2y+1\right)^2=\left(2y-3\right)^3\)
\(\Leftrightarrow8y^3-40y^2+50y-28=0\)
\(\Leftrightarrow2\left(2y-7\right)\left(2y^2-3y+2\right)=0\)
\(\Leftrightarrow y=\frac{7}{2}\)
\(\Rightarrow x=\frac{9}{2}\)
Xem lại đề nhé