Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a,\hept{\begin{cases}\left(x-y\right)^2=1\\2x^2+2y^2-2xy-y=0\end{cases}}\)
Xét từng TH với x-y=1 và x-y=-1
\(b,\hept{\begin{cases}\left(x-1\right)\left(y+2\right)=0\\xy-3x+2y=0\end{cases}}\)
Xét từng TH x=1 và y=-2
Ta có:
\(\hept{\begin{cases}x+y+xy=4\\x^2+xy-y=0\end{cases}}\)
Đề thấy \(x=-1\)không phải là nghiệm của hệ. Nên ta có
\(\Leftrightarrow\hept{\begin{cases}y=\frac{4-x}{x+1}\left(1\right)\\x^2+xy-y=0\left(2\right)\end{cases}}\)
Thế (1) vào (2) ta được: \(x^2+x.\frac{4-x}{x+1}-\frac{4-x}{x+1}=0\)
\(\Leftrightarrow x^3+5x-4=0\)
Tới đây thì bấm máy tính rồi thế ngược lại tìm được y nhé
Xet \(xy-2\ge0\) thì co hệ
\(\hept{\begin{cases}xy-2=4-y^2\\x^2-xy+1=0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}y^2+xy=6\\6x^2-6xy=-6\end{cases}}\)
Lây trên trừ dươi được
\(y^2-5xy+6x^2=0\)
\(\Leftrightarrow\left(y-3x\right)\left(y-2x\right)=0\)
Xet Xet \(xy-2< 0\) thì co hệ
\(\hept{\begin{cases}2-xy=4-y^2\\x^2-xy+1=0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}y^2-xy=2\\x^2-xy=-1\end{cases}}\)
Lây trên cộng đươi được
\(\left(x-y\right)^2=1\)
Làm nôt
ĐKXĐ: \(x;y\)\(\ge\)0
Biến đổi phương trình thứ nhất ta có \(y-2x+\sqrt{y}-\sqrt{x}+\sqrt{xy}=0\Leftrightarrow y-x+\sqrt{y}-\sqrt{x}-x+\sqrt{xy}=0\)
\(\Leftrightarrow\left(\sqrt{y}-\sqrt{x}\right)\left(\sqrt{y}+\sqrt{x}\right)+\left(\sqrt{y}-\sqrt{x}\right)+\sqrt{xy}-\sqrt{x}=0\)
\(\Leftrightarrow\left(\sqrt{y}-\sqrt{x}\right)\left(\sqrt{y}+\sqrt{x}\right)+\left(\sqrt{y}-\sqrt{x}\right)+\sqrt{x}\left(\sqrt{y}-\sqrt{x}\right)=0\)
\(\Leftrightarrow\left(\sqrt{y}-\sqrt{x}\right)\left(\sqrt{y}+2\sqrt{x}+1\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}\sqrt{y}-\sqrt{x}=0\Leftrightarrow x=y\\\sqrt{y}+2\sqrt{x}+1=0\end{cases}}\)Mặt khác \(\sqrt{y}+2\sqrt{x}+1\ge1>0\forall x;y\)
\(\Rightarrow\)vô nghiệm
Thay x=y vào phương trình thứ hai rồi tự tính tiếp nha bạn coa nghiệm x=y=1
\(\hept{\begin{cases}y^2-xy+1=0\left(1\right)\\x^2+2x+y^2+2y+1\left(2\right)\end{cases}}\)từ (1) \(\Rightarrow y^2=xy+1\)thế vào 2 có : \(x^2+2x+xy-1+2y+1=0\)
\(\Rightarrow x^2+xy+2x+2y=0\)\(\Rightarrow x\left(x+y\right)+2\left(x+y\right)=0\)\(\Rightarrow\left(x+2\right)\left(x+y\right)=0\Leftrightarrow\orbr{\begin{cases}x=-2\\x=-y\end{cases}}\)
- TH1: \(x=-2\Rightarrow y^2+2y+1=0\Leftrightarrow\left(y+1\right)^2=0\Leftrightarrow y=-1\)
- TH2 : \(x=-y\Rightarrow y^2+y^2+1=0\Leftrightarrow2y^2+1=0\)VN vì \(2y^2+1\ge1\forall y\)
- Kết luận nghiệm : \(\hept{\begin{cases}x=-2\\y=-1\end{cases}}\)
a) \(\hept{\begin{cases}\left(x-1\right)\left(2x+y\right)=0\\\left(y+1\right)\left(2y-x\right)=0\end{cases}}\)
\(\cdot x=1\Rightarrow\hept{\begin{cases}0=0\\\left(y+1\right)\left(2y-1\right)=0\end{cases}}\Leftrightarrow\hept{\begin{cases}0=0\\y=-1;y=\frac{1}{2}\end{cases}}\)
\(\cdot y=-1\Rightarrow\hept{\begin{cases}\left(x-1\right)\left(2x-1\right)=0\\0=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=1;x=\frac{1}{2}\\0=0\end{cases}}\)
\(\cdot x=2y\Rightarrow\hept{\begin{cases}\left(2y-1\right)5y=0\\0=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}y=0\Rightarrow x=0\\y=\frac{1}{2}\Rightarrow x=1\end{cases}}\)
\(y=-2x\Rightarrow\hept{\begin{cases}0=0\\\left(1-2x\right)5x=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=\frac{1}{2}\Rightarrow y=-1\\x=0\Rightarrow y=0\end{cases}}\)
b) \(\hept{\begin{cases}x+y=\frac{21}{8}\\\frac{x}{y}+\frac{y}{x}=\frac{37}{6}\end{cases}\Leftrightarrow\hept{\begin{cases}x=\frac{21}{8}-y\\\left(\frac{21}{8}-y\right)^2+y^2=\frac{37}{6}y\left(\frac{21}{8}-y\right)\end{cases}}}\)
\(\Leftrightarrow\hept{\begin{cases}x=\frac{21}{8}-y\\2y^2-\frac{21}{4}y+\frac{441}{64}=-\frac{37}{6}y^2+\frac{259}{16}y\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}x=\frac{21}{8}-y\\1568y^2-4116y+1323=0\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}x=\frac{3}{8}\\y=\frac{9}{4}\end{cases}}hay\hept{\begin{cases}x=\frac{9}{4}\\y=\frac{3}{8}\end{cases}}\)
c) \(\hept{\begin{cases}\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=2\\\frac{2}{xy}-\frac{1}{z^2}=4\end{cases}\Leftrightarrow\hept{\begin{cases}\frac{1}{z^2}=\left(2-\frac{1}{x}-\frac{1}{y}\right)^2\\\frac{1}{z^2}=\frac{2}{xy}-4\end{cases}}}\)\(\Leftrightarrow\hept{\begin{cases}\left(2xy-x-y\right)^2=-4x^2y^2+2xy\\\frac{1}{z^2}=\frac{2}{xy}-4\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}8x^2y^2-4x^2y-4xy^2+x^2+y^2-2xy+2xy=0\\\frac{1}{z^2}=\frac{2}{xy}-4\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}4x^2y^2-4x^2y+x^2+4x^2y^2-4xy^2+y^2=0\\\frac{1}{z^2}=\frac{2}{xy}-4\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}\left(2xy-x\right)^2+\left(2xy-y\right)^2=0\\\frac{1}{z^2}=\frac{2}{xy}-4\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}x=y=\frac{1}{2}\\z=\frac{-1}{2}\end{cases}}\)
d) \(\hept{\begin{cases}xy+x+y=71\\x^2y+xy^2=880\end{cases}}\). Đặt \(\hept{\begin{cases}x+y=S\\xy=P\end{cases}}\), ta có: \(\hept{\begin{cases}S+P=71\\SP=880\end{cases}}\Leftrightarrow\hept{\begin{cases}S=71-P\\P\left(71-P\right)=880\end{cases}}\Leftrightarrow\hept{\begin{cases}S=71-P\\P^2-71P+880=0\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}S=16\\P=55\end{cases}}hay\hept{\begin{cases}S=55\\P=16\end{cases}}\)
\(\cdot\hept{\begin{cases}S=16\\P=55\end{cases}}\Leftrightarrow\hept{\begin{cases}x+y=16\\xy=55\end{cases}}\Leftrightarrow\hept{\begin{cases}x=16-y\\y\left(16-y\right)=55\end{cases}}\Leftrightarrow\hept{\begin{cases}x=16-y\\y^2-16y+55=0\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}x=5\\y=11\end{cases}}hay\hept{\begin{cases}x=11\\y=5\end{cases}}\)
\(\cdot\hept{\begin{cases}S=55\\P=16\end{cases}}\Leftrightarrow\hept{\begin{cases}x+y=55\\xy=16\end{cases}}\Leftrightarrow\hept{\begin{cases}x=55-y\\y\left(55-y\right)=16\end{cases}}\Leftrightarrow\hept{\begin{cases}x=55-y\\y^2-55y+16=0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x=\frac{55-3\sqrt{329}}{2}\\y=\frac{55+3\sqrt{329}}{2}\end{cases}}hay\hept{\begin{cases}x=\frac{55+3\sqrt{329}}{2}\\y=\frac{55-3\sqrt{329}}{2}\end{cases}}\)
e) \(\hept{\begin{cases}x\sqrt{y}+y\sqrt{x}=12\\x\sqrt{x}+y\sqrt{y}=28\end{cases}}\). Đặt \(\hept{\begin{cases}S=\sqrt{x}+\sqrt{y}\\P=\sqrt{xy}\end{cases}}\), ta có \(\hept{\begin{cases}SP=12\\P\left(S^2-2P\right)=28\end{cases}}\Leftrightarrow\hept{\begin{cases}S=\frac{12}{P}\\P\left(\frac{144}{P^2}-2P\right)=28\end{cases}}\Leftrightarrow\hept{\begin{cases}S=\frac{12}{P}\\2P^4+28P^2-144P=0\end{cases}}\)
Tự làm tiếp nhá! Đuối lắm luôn
\(\hept{\begin{cases}2x^2+xy-y^2-5x+y+2=0\\x^2+y^2+x+y-4=0\end{cases}\Leftrightarrow\hept{\begin{cases}y^2-\left(x+1\right)y-2x^2+5x-2=0\\x^2+y^2+x+y-4=0\end{cases}}}\)
\(\Leftrightarrow\hept{\begin{cases}\left(y+x-2\right)\left(y-2x+1\right)=0\\x^2+y^2+x+y-4=0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}y+x-2=0\\x^2+y^2+x+y-4=0\end{cases}}\)hoặc \(\hept{\begin{cases}y-2x+1=0\\x^2+y^2+x+y-4=0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x=1\\y=1\end{cases}}\)hoặc \(\hept{\begin{cases}x=\frac{-4}{5}\\y=\frac{-13}{5}\end{cases}}\)và \(\hept{\begin{cases}x=1\\y=1\end{cases}}\)
Vậy hpt có 2 nghiệm (x;y)=\(\left(1;1\right);\left(\frac{-4}{5};\frac{-13}{5}\right)\)