Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
h) \(\left\{{}\begin{matrix}\dfrac{1}{x}+\dfrac{1}{y}=2\\\dfrac{3}{x}-\dfrac{4}{y}=-1\end{matrix}\right.\)\(\left(1\right)\)\(\left(đk:x,y\ne0\right)\)
Đặt \(a=\dfrac{1}{x},b=\dfrac{1}{y}\)
\(\left(1\right)\Leftrightarrow\) \(\left\{{}\begin{matrix}a+b=2\\3a-4b=-1\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}3a+3b=6\\3a-4b=-1\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}a+b=2\\7b=7\end{matrix}\right.\)\(\Leftrightarrow a=b=1\)
Thay a,b:
\(\Leftrightarrow\dfrac{1}{x}=\dfrac{1}{y}=1\Leftrightarrow x=y=1\left(tm\right)\)
\(\left\{{}\begin{matrix}\dfrac{2x}{x+1}+\dfrac{y}{y+1}=3\\\dfrac{x}{x+1}+\dfrac{3y}{y+1}=-1\end{matrix}\right.\)\(\left(Đk:x,y\ne-1\right)\)
\(\left\{{}\begin{matrix}\dfrac{2x}{x+1}+\dfrac{y}{y+1}=3\\\dfrac{2x}{x+1}+\dfrac{6y}{y+1}=-2\end{matrix}\right.\)
\(\Rightarrow\dfrac{5y}{y+1}=-5\)
\(\Leftrightarrow5y=-5y-5\)
\(\Leftrightarrow10y=-5\)
\(\Leftrightarrow y=-\dfrac{1}{2}\Rightarrow x=-2\)
<=>\(\dfrac{2x}{x+1}-\dfrac{x}{x+1}=4< =>x-4x=4< =>x=-\dfrac{4}{3}\Rightarrow y=-\dfrac{1}{4}\)
a) \(\left\{{}\begin{matrix}5a+b=5\\b-10a=-19\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}5a+b=5\\15a=24\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}a=\dfrac{8}{5}\\b=-3\end{matrix}\right.\)
d) \(\left\{{}\begin{matrix}\dfrac{1}{x}-\dfrac{6}{y}=17\\\dfrac{5}{x}+\dfrac{6}{y}=13\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{1}{x}-\dfrac{6}{y}=17\\\dfrac{6}{x}=30\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{1}{5}\\y=-\dfrac{1}{2}\end{matrix}\right.\)
Bài 2:
Ta có: \(A=\sqrt{3+\sqrt{5}}+\sqrt{7-3\sqrt{5}}-\sqrt{2}\)
\(=\dfrac{\sqrt{6+2\sqrt{5}}+\sqrt{14-6\sqrt{5}}-2}{\sqrt{2}}\)
\(=\dfrac{\sqrt{5}+1+3-\sqrt{5}-2}{\sqrt{2}}=\sqrt{2}\)
\(\left\{{}\begin{matrix}\dfrac{2x-y}{3}=x+y+1\\x-3y-5=\dfrac{2x-y}{2}\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}2x-y=3\left(x+y+1\right)\\2\left(x-3y-5\right)=2x-y\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}2x-y-3x-3y=3\\2x-6y-10-2x+y=0\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}-x-4y=3\\-5y=10\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}y=-2\\x+4y=-3\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}y=-2\\x=-3-4y=-3-4\cdot\left(-2\right)=8-3=5\end{matrix}\right.\)
Bài 2:
a) Ta có: \(\Delta=\left(m-1\right)^2-4\cdot1\cdot\left(-m^2-2\right)\)
\(=m^2-2m+1+4m^2+8\)
\(=5m^2-2m+9>0\forall m\)
Do đó, phương trình luôn có hai nghiệm phân biệt với mọi m
Bài 1:
ĐKXĐ \(2x\ne y\)
Đặt \(\dfrac{1}{2x-y}=a;x+3y=b\)
HPT trở thành
\(\left\{{}\begin{matrix}a+b=\dfrac{3}{2}\\4a-5b=-2\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}a=\dfrac{3}{2}-b\\4\left(\dfrac{3}{2}-b\right)-5b=-2\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}a=\dfrac{3}{2}-b\\6-9b=-2\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}b=\dfrac{8}{9}\\a=\dfrac{11}{18}\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x+3y=\dfrac{8}{9}\\2x-y=\dfrac{18}{11}\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}y=2x-\dfrac{18}{11}\\x+3\left(2x-\dfrac{18}{11}\right)=\dfrac{8}{9}\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{82}{99}\\y=\dfrac{2}{99}\end{matrix}\right.\)
a: ĐKXĐ: \(\left\{{}\begin{matrix}x< >\dfrac{3}{2}y\\x< >-\dfrac{y}{3}\end{matrix}\right.\)
\(\left\{{}\begin{matrix}\dfrac{4}{2x-3y}+\dfrac{5}{3x+y}=-2\\\dfrac{-5}{2x-3y}+\dfrac{3}{3x+y}=21\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}\dfrac{20}{2x-3y}+\dfrac{25}{3x+y}=-10\\-\dfrac{20}{2x-3y}+\dfrac{12}{3x+y}=84\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}\dfrac{37}{3x+y}=74\\-\dfrac{5}{2x-3y}+\dfrac{3}{3x+y}=21\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}3x+y=\dfrac{1}{2}\\-\dfrac{5}{2x-3y}+3:\dfrac{1}{2}=21\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}3x+y=\dfrac{1}{2}\\\dfrac{-5}{2x-3y}=15\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}3x+y=\dfrac{1}{2}\\2x-3y=-\dfrac{1}{3}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}9x+3y=\dfrac{3}{2}\\2x-3y=-\dfrac{1}{3}\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}11x=\dfrac{7}{6}\\2x-3y=-\dfrac{1}{3}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{7}{66}\\3y=2x+\dfrac{1}{3}=\dfrac{7}{33}+\dfrac{1}{3}=\dfrac{6}{11}\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}x=\dfrac{7}{66}\\y=\dfrac{2}{11}\end{matrix}\right.\)(nhận)
b: ĐKXĐ: \(\left\{{}\begin{matrix}x< >y-2\\x< >-y+1\end{matrix}\right.\)
\(\left\{{}\begin{matrix}\dfrac{7}{x-y+2}-\dfrac{5}{x+y-1}=\dfrac{9}{2}\\\dfrac{3}{x-y+2}+\dfrac{2}{x+y-1}=4\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}\dfrac{14}{x-y+2}-\dfrac{10}{x+y-1}=9\\\dfrac{15}{x-y+2}+\dfrac{10}{x+y-1}=20\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}\dfrac{29}{x-y+2}=29\\\dfrac{3}{x-y+2}+\dfrac{2}{x+y-1}=4\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}x-y+2=1\\3+\dfrac{2}{x+y-1}=4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x-y=-1\\\dfrac{2}{x+y-1}=1\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}x-y=-1\\x+y-1=2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x-y=-1\\x+y=3\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}2x=2\\x+y=3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=2\end{matrix}\right.\)(nhận)
c:
ĐKXĐ: \(\left\{{}\begin{matrix}y< >2x\\y< >-x\end{matrix}\right.\)
\(\left\{{}\begin{matrix}\dfrac{3}{2x-y}-\dfrac{6}{x+y}=-1\\\dfrac{1}{2x-y}-\dfrac{1}{x+y}=0\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}\dfrac{3}{2x-y}-\dfrac{6}{x+y}=-1\\\dfrac{3}{2x-y}-\dfrac{3}{x+y}=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}-\dfrac{3}{x+y}=-1\\\dfrac{1}{2x-y}-\dfrac{1}{x+y}=0\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}x+y=3\\2x-y=3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}3x=6\\2x-y=3\end{matrix}\right.\)
=>x=2 và y=2x-3=4-3=1(nhận)
d:ĐKXĐ: \(\left\{{}\begin{matrix}x< >-y+1\\x< >\dfrac{1}{2}y-\dfrac{3}{2}\end{matrix}\right.\)
\(\left\{{}\begin{matrix}\dfrac{4}{x+y-1}-\dfrac{5}{2x-y+3}=\dfrac{5}{2}\\\dfrac{3}{x+y-1}+\dfrac{1}{2x-y+3}=\dfrac{7}{5}\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}\dfrac{4}{x+y-1}-\dfrac{5}{2x-y+3}=\dfrac{5}{2}\\\dfrac{15}{x+y-1}+\dfrac{5}{2x-y+3}=7\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}\dfrac{19}{x+y-1}=\dfrac{19}{2}\\\dfrac{15}{x+y-1}+\dfrac{5}{2x-y+3}=7\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}x+y-1=2\\\dfrac{15}{2}+\dfrac{5}{2x-y+3}=7\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x+y=3\\\dfrac{5}{2x-y+3}=7-\dfrac{15}{2}=-\dfrac{1}{2}\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}x+y=3\\2x-y+3=-10\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x+y=3\\2x-y=-13\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}3x=-10\\x+y=3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-\dfrac{10}{3}\\y=3-x=3+\dfrac{10}{3}=\dfrac{19}{3}\end{matrix}\right.\left(nhận\right)\)
e:
ĐKXĐ: \(x\ne\pm2y\)
\(\left\{{}\begin{matrix}\dfrac{6}{x-2y}+\dfrac{2}{x+2y}=3\\\dfrac{3}{x-2y}+\dfrac{4}{x+2y}=-1\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}\dfrac{6}{x-2y}+\dfrac{2}{x+2y}=3\\\dfrac{6}{x-2y}+\dfrac{8}{x+2y}=-2\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}-\dfrac{6}{x+2y}=5\\\dfrac{3}{x-2y}+\dfrac{4}{x+2y}=-1\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}x+2y=-\dfrac{6}{5}\\\dfrac{3}{x-2y}+4:\dfrac{-6}{5}=-1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x+2y=-\dfrac{6}{5}\\\dfrac{3}{x-2y}=-1+4\cdot\dfrac{5}{6}=-1+\dfrac{10}{3}=\dfrac{7}{3}\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}x+2y=-\dfrac{6}{5}\\x-2y=\dfrac{9}{7}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}2x=\dfrac{3}{35}\\x-2y=\dfrac{9}{7}\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}x=\dfrac{3}{70}\\2y=x-\dfrac{9}{7}=-\dfrac{87}{70}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{3}{70}\\y=-\dfrac{87}{140}\end{matrix}\right.\left(nhận\right)\)
\(\left\{{}\begin{matrix}\dfrac{12}{x-1}+\dfrac{7}{y+3}=19\\\dfrac{2x+6}{x-1}+\dfrac{3y+14}{y+3}=18\end{matrix}\right.\left(x\ne1;y\ne-3\right)\)
\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{12}{x-1}+\dfrac{7}{y+3}=19\\\dfrac{2x-2+8}{x-1}+\dfrac{3y+9+5}{y+3}=18\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{12}{x-1}+\dfrac{7}{y+3}=19\\\dfrac{2\left(x-1\right)}{x-1}+\dfrac{8}{x-1}+\dfrac{3\left(y+3\right)}{y+3}+\dfrac{5}{y+3}=18\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{12}{x-1}+\dfrac{7}{y+3}=19\\2+\dfrac{8}{x-1}+3+\dfrac{5}{y+3}=18\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{12}{x-1}+\dfrac{7}{y+3}=19\\\dfrac{8}{x-1}+\dfrac{5}{y+3}=13\end{matrix}\right.\) (I)
Đặt: \(\left\{{}\begin{matrix}u=\dfrac{1}{x-1}\\v=\dfrac{1}{y+3}\end{matrix}\right.\)
Hệ (I) trở thành:
\(\Leftrightarrow\left\{{}\begin{matrix}12u+7v=19\\8u+5v=13\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}24u+14v=38\\24u+15v=39\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}12u+7=19\\v=1\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}12u=12\\v=1\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}u=1\\v=1\end{matrix}\right.\)
Trả ẩn phụ:
\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{1}{x-1}=1\\\dfrac{1}{y+3}=1\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x-1=1\\y+3=1\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=2\\y=-2\end{matrix}\right.\left(tm\right)\)
Vậy hệ pt có 1 cặp nghiệm duy nhất là: (2;-2)
⎪ ⎪⎨⎪ ⎪ ⎪⎩12x−1+7y+3=192x+6x−1+3y+14y+3=18(x≠1;y≠−3){12�−1+7�+3=192�+6�−1+3�+14�+3=18(�≠1;�≠−3)
⇔⎧⎪ ⎪ ⎪⎨⎪ ⎪ ⎪⎩12x−1+7y+3=192x−2+8x−1+3y+9+5y+3=18⇔{12�−1+7�+3=192�−2+8�−1+3�+9+5�+3=18
⇔⎧⎪ ⎪ ⎪⎨⎪ ⎪ ⎪⎩12x−1+7y+3=192(x−1)x−1+8x−1+3(y+3)y+3+5y+3=18⇔{12�−1+7�+3=192(�−1)�−1+8�−1+3(�+3)�+3+5�+3=18
⇔⎧⎪ ⎪ ⎪⎨⎪ ⎪ ⎪⎩12x−1+7y+3=192+8x−1+3+5y+3=18⇔{12�−1+7�+3=192+8�−1+3+5�+3=18
⇔⎧⎪ ⎪ ⎪⎨⎪ ⎪ ⎪⎩12x−1+7y+3=198x−1+5y+3=13⇔{12�−1+7�+3=198�−1+5�+3=13 (I)
Đặt: ⎧⎪ ⎪ ⎪⎨⎪ ⎪ ⎪⎩u=1x−1v=1y+3{�=1�−1�=1�+3
Hệ (I) trở thành:
⇔{12u+7v=198u+5v=13⇔{12�+7�=198�+5�=13
⇔{24u+14v=3824u+15v=39⇔{24�+14�=3824�+15�=39
⇔{12u+7=19v=1⇔{12�+7=19�=1
⇔{12u=12v=1⇔{12�=12�=1
⇔{u=1v=1⇔{�=1�=1
Trả ẩn phụ:
⇔⎧⎪ ⎪ ⎪⎨⎪ ⎪ ⎪⎩1x−1=11y+3=1⇔{1�−1=11�+3=1
⇔{x−1=1y+3=1⇔{�−1=1�+3=1
⇔{x=2y=−2(tm)⇔{�=2�=−2(��)
Vậy hệ pt có 1 cặp nghiệm duy nhất là: (2;-2)