Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(1.\left(x\ne\pm1\right)\Rightarrow pt\Leftrightarrow\left(x-m\right)\left(x-1\right)=\left(x+1\right)\left(x-2\right)\)
\(\Leftrightarrow x^2-x\left(m+1\right)+m=x^2-x-2\)
\(\Leftrightarrow-x\left(m+1\right)+m=-x-2\)
\(\Leftrightarrow x=\dfrac{m+2}{m}\left(m\ne0\right)\)
\(pt-có-ngo-duy-nhất\Leftrightarrow\left\{{}\begin{matrix}\dfrac{m+2}{m}\ne1\\\dfrac{m+2}{m}\ne-1\end{matrix}\right.\)\(\Leftrightarrow m\ne-1\)
\(\Rightarrow\left\{{}\begin{matrix}m\ne0\\m\ne-1\end{matrix}\right.\)
\(2.\left\{{}\begin{matrix}x^2+8y^2=12\left(1\right)\\x^3+2xy^2+12y=0\left(2\right)\end{matrix}\right.\)
\(\left(2\right)\Leftrightarrow x^3+2xy^2+y\left(x^2+8y^2\right)=0\)
\(\Leftrightarrow\left(x+2y\right)\left(x^2-xy+4y^2\right)=0\Leftrightarrow\left[{}\begin{matrix}x=-2y\left(3\right)\\x^2-xy+4y^2=\left(x-\dfrac{y}{2}\right)^2+\dfrac{15}{4}y^2=0\left(4\right)\end{matrix}\right.\)
\(\left(3\right)\left(1\right)\Rightarrow4y^2+8y^2=12\Leftrightarrow\left[{}\begin{matrix}y=1\Rightarrow x=-2\\y=-1\Rightarrow x=2\end{matrix}\right.\)
với \(x=y=0\) không là nghiệm của hệ pt
với \(x=y\ne0\Rightarrow\left(4\right)>0\Rightarrow\left(4\right)-vô-nghiệm\)
\(\Rightarrow\left(x;y\right)=\left\{\left(-2;1\right);\left(2;-1\right)\right\}\)
\(1,\Leftrightarrow\left(x-m\right)\left(x-1\right)=x^2-x-2\\ \Leftrightarrow x^2-x-mx+m-x^2+x+2=0\\ \Leftrightarrow mx=m+2\)
PT có nghiệm duy nhất \(\Leftrightarrow m\ne0\)
\(2,\Leftrightarrow\left\{{}\begin{matrix}x^2y+8y^3=12y\\x^3+2xy^2+12y=0\end{matrix}\right.\)
Thế \(PT\left(1\right)\rightarrow PT\left(2\right)\Leftrightarrow x^3+2xy^2+x^2y+8y^3=0\)
\(\Leftrightarrow\left(x+2y\right)\left(x^2-2xy+4y^2\right)+xy\left(x+2y\right)=0\\ \Leftrightarrow\left(x+2y\right)\left(x^2-xy+4y^2\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=-2y\\\left(x-\dfrac{1}{2}y\right)^2+\dfrac{15}{4}y^2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-2y\\\left\{{}\begin{matrix}x-\dfrac{1}{2}y=0\\y^2=0\end{matrix}\right.\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-2y\\x=y=0\end{matrix}\right.\)
Thay \(x=y=0\Leftrightarrow0+0=12\left(loại\right)\)
Thay \(x=-2y\Leftrightarrow4y^2+8y^2=12y^2=12\Leftrightarrow\left[{}\begin{matrix}y=1\Rightarrow x=-2\\y=-1\Rightarrow x=2\end{matrix}\right.\)
Vậy \(\left(x;y\right)\in\left\{\left(-2;1\right);\left(2;-1\right)\right\}\)
a.
Thay số 12 từ pt trên xuống dưới:
\(x^3+2xy^2+y\left(x^2+8y^2\right)=0\)
\(\Leftrightarrow x^3+x^2y+2xy^2+8y^3=0\)
\(\Leftrightarrow\left(x+2y\right)\left(x^2-xy+4y^2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-2y\\x=y=0\left(ktm\right)\end{matrix}\right.\)
Thế vào pt đầu:
\(\left(-2y\right)^2+8y^2=12\Leftrightarrow y^2=1\Rightarrow\left[{}\begin{matrix}y=1\Rightarrow x=-2\\y=-1\Rightarrow x=2\end{matrix}\right.\)
b.
Thế số 1 từ pt trên xuống dưới:
\(x^7+y^7=\left(x^4+y^4\right)\left(x^3+y^3\right)\)
\(\Leftrightarrow x^4y^3+x^3y^4=0\)
\(\Leftrightarrow x^3y^3\left(x+y\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\y=0\\y=-x\end{matrix}\right.\)
Thế vào pt đầu: \(\Rightarrow\left[{}\begin{matrix}y^3=1\\x^3=1\\x^3-x^3=1\left(vô-nghiệm\right)\end{matrix}\right.\)
Vậy nghiệm của hệ là: \(\left(x;y\right)=\left(1;0\right);\left(0;1\right)\)
ĐKXĐ: ...
Đặt \(\left\{{}\begin{matrix}\sqrt{2x+y}=a\ge0\\\sqrt{y}=b\ge0\end{matrix}\right.\) thì pt đầu trở thành:
\(\dfrac{a^2-b^2}{2}-4b^2+3b=a\Leftrightarrow a^2-9b^2+6b=2a\)
\(\Leftrightarrow\left(a-3b\right)\left(a+3b\right)-2\left(a-3b\right)=0\)
\(\Leftrightarrow\left(a-3b\right)\left(a+3b-2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}a=3b\\a=2-3b\end{matrix}\right.\) \(\Rightarrow...\)
\(x^3-7x^2y+16xy^2-12y^3=0\)
\(\Leftrightarrow\left(x-3y\right)\left(x-2y\right)^2=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=2y\\x=3y\end{matrix}\right.\)
Thế xuống pt dưới giải đơn giản
\(x^3+3x^2+4x+2=8y^3+2y\)
\(\Leftrightarrow\left(x+1\right)^3-\left(2y\right)^3+\left(x+1-2y\right)=0\)
\(\Leftrightarrow\left(x+1-2y\right)\left[\left(x+1\right)^2+2y\left(x+1\right)+4y^2+1\right]=0\)
\(\Leftrightarrow x+1-2y=0\Rightarrow2y=x+1\)
\(\Rightarrow x^3-x\left(x+1\right)-\frac{1}{3}=0\)
\(\Leftrightarrow3x^3-3x^2-3x-1=0\)
\(\Rightarrow x=\frac{\sqrt[3]{16}+\sqrt[3]{4}+1}{3}\)
ĐKXĐ: \(\left\{{}\begin{matrix}9y-5\ge0\\x+y\ge0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y\ge\dfrac{5}{9}\\x+y\ge0\end{matrix}\right.\).
Phương trình (1) tương đương với:
\(\left(x^2+y^2\right)\left(x+y\right)-\left(x+y\right)+2xy=0\)
\(\Leftrightarrow\left(x^2+y^2\right)\left(x+y\right)-\left(x^2+y^2\right)+x^2+y^2-\left(x+y\right)+2xy=0\)
\(\Leftrightarrow\left(x^2+y^2\right)\left(x+y-1\right)+\left(x+y\right)^2-\left(x+y\right)=0\)
\(\Leftrightarrow\left(x^2+y^2\right)\left(x+y-1\right)+\left(x+y\right)\left(x+y-1\right)=0\)
\(\Leftrightarrow\left(x+y-1\right)\left(x^2+y^2+x+y\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x+y-1=0\\x^2+y^2+x+y=0\end{matrix}\right.\)
- Với \(x^2+y^2+x+y=0\) có \(x+y=0\) (theo điều kiện)
suy ra \(x=y=0\) (không thỏa mãn).
- Với \(x+y-1=0\Leftrightarrow y=1-x\) thế vào phương trình (2) ta được:
\(x^2+11x+6=2\sqrt{9\left(1-x\right)-5}+\sqrt{1}\)
\(\Leftrightarrow x^2+11x+5-2\sqrt{14-9x}=0\)
\(\Rightarrow\left(x^2+11x+5\right)^2=4\left(14-9x\right)\)
\(\Leftrightarrow x^4+22x^3+131x^2+146x-31=0\)
Bạn giải phương trình trên, thử lại ta được nghiệm của bài toán.
Đáp án ra số khá xấu nên thầy không ghi ra đây.
Em có thể tham khảo cách làm nhé.
Lời giải:
HPT $\Rightarrow x^3+2xy^2+y(x^2+8y^2)=0$
$\Leftrightarrow x^3+2xy^2+x^2y+8y^3=0$
$\Leftrightarrow (x^3+8y^3)+(2xy^2+x^2y)=0$
$\Leftrightarrow (x+2y)(x^2-2xy+4y^2)+xy(2y+x)=0$
$\Leftrightarrow (x+2y)(x^2-xy+4y^2)=0$
Dễ thấy $x,y$ không thể cùng đồng thời bằng $0$. Do đó $x^2-xy+4y^2>0$
$\Rightarrow x+2y=0$
$\Rightarrow x=-2y$. Thay vào PT $(1)$:
$(-2y)^2+8y^2=12\Leftrightarrow y^2=1$
$\Rightarrow y=\pm 1$
$\Rightarrow x=\mp 2$
Vậy...........