K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 11 2023

a: \(\left\{{}\begin{matrix}\dfrac{x}{2}-\dfrac{y}{3}=1\\5x-8y=3\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}\dfrac{x}{2}=\dfrac{y}{3}+1\\5x-8y=3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{2}{3}y+2\\5\cdot\left(\dfrac{2}{3}y+2\right)-8y=3\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}x=\dfrac{2}{3}y+2\\\dfrac{10}{3}y+10-8y=3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}-\dfrac{14}{3}y=-7\\x=\dfrac{2}{3}y+2\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}y=7:\dfrac{14}{3}=7\cdot\dfrac{3}{14}=\dfrac{3}{2}\\x=\dfrac{2}{3}\cdot\dfrac{3}{2}+2=1+2=3\end{matrix}\right.\)

b: \(\left\{{}\begin{matrix}3x+2y=2\\6x-3y=18\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}3x=2-2y\\2\cdot3x-3y=18\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}3x=2-2y\\2\left(2-2y\right)-3y=18\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}4-7y=18\\3x=2-2y\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}7y=-14\\3x=2-2y\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=-2\\3x=2-2\cdot\left(-2\right)=6\end{matrix}\right.\)

=>x=2 và y=-2

26 tháng 9 2021

\(\left\{{}\begin{matrix}x^3-3x^2-9x+22=y^3+3y^2-9y\left(1\right)\\x^2+y^2-x+y=\dfrac{1}{2}\left(2\right)\end{matrix}\right.\)

PT (1)\(\Leftrightarrow\left(x-y\right)^3+3xy\left(x-y\right)-3\left(x^2+y^2\right)-9\left(x-y\right)=-22\)

\(\Leftrightarrow\left(x-y\right)^3+3xy\left(x-y\right)-3\left(x-y\right)^2-6xy-9\left(x-y\right)=-22\)

PT (2)\(\Leftrightarrow\left(x-y\right)^2-\left(x-y\right)+2xy=\dfrac{1}{2}\)

Đặt \(\left\{{}\begin{matrix}a=x-y\\b=xy\end{matrix}\right.\)

Hệ tt \(\left\{{}\begin{matrix}a^3+3ab-3a^2-6b-9a=-22\\a^2-a+2b=\dfrac{1}{2}\end{matrix}\right.\)

\(\left\{{}\begin{matrix}a^3+3ab-3a^2-6b-9a=-22\\b=\dfrac{1-2a^2+2a}{4}\end{matrix}\right.\)

\(\Rightarrow a^3+3a\left(\dfrac{1-2a^2+2a}{4}\right)-3a^2-6\left(\dfrac{1-2a^2+2a}{4}\right)-9a=-22\)

\(\Leftrightarrow-2a^3+6a^2-45a+82=0\)

\(\Leftrightarrow a=2\)\(\Rightarrow b=-\dfrac{3}{4}\)

\(\Rightarrow\left\{{}\begin{matrix}x-y=2\\xy=-\dfrac{3}{4}\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}y=-\dfrac{1}{2}\\x=\dfrac{3}{2}\end{matrix}\right.\\\left\{{}\begin{matrix}y=-\dfrac{3}{2}\\x=\dfrac{1}{2}\end{matrix}\right.\end{matrix}\right.\)

Vậy...

31 tháng 5 2020

a)\(\left\{{}\begin{matrix}8x+2y=4\\8x+3y=5\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=1\\4x+1=2\end{matrix}\right.\Leftrightarrow}\left\{{}\begin{matrix}y=1\\x=\frac{1}{4}\end{matrix}\right.\)b)

\(\left\{{}\begin{matrix}12x-8y=44\\12x-15y=9\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}7y=35\\4x-5y=3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=5\\4x-5.5=3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=5\\x=7\end{matrix}\right.\)c)\(\left\{{}\begin{matrix}9x=-18\\4x+3y=13\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-2\\4.\left(-2\right)+3y=13\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-2\\y=7\end{matrix}\right.\)

31 tháng 5 2020

bạn giải câu g hộ mỉnh đc ko

1 tháng 1 2018

1. Đề này là 18 chứ không phải 15 nhé

\(\left\{{}\begin{matrix}\sqrt{x^2+x+y+1}+x+\sqrt{y^2+x+y+1}+y=18\left(1\right)\\\sqrt{x^2+x+y+1}-x+\sqrt{y^2+x+y+1}-y=2\left(2\right)\end{matrix}\right.\)

Lấy (1) + (2) và (1) - (2) ta được hệ mới

\(\left\{{}\begin{matrix}\sqrt{x^2+x+y+1}+\sqrt{y^2+x+y+1}=10\\x+y=8\end{matrix}\right.\)

\(\Rightarrow x=8-y\)

\(\Rightarrow\sqrt{x^2+9}+\sqrt{y^2+9}=10\)\(\Leftrightarrow\sqrt{x^2+9}=10-\sqrt{y^2+9}\)

\(\Leftrightarrow\left\{{}\begin{matrix}10-\sqrt{y^2+9}>0\\x^2+9=100-20\sqrt{y^2+9}+y^2+9\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}10-\sqrt{y^2+9}>0\\x^2=100-20\sqrt{y^2+9}+y^2\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}10-\sqrt{y^2+9}>0\\\left(8-y\right)^2=100-20\sqrt{y^2+9}+y^2\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}10-\sqrt{y^2+9}>0\\9y^2-72y+144=0\end{matrix}\right.\)\(\Rightarrow\left\{{}\begin{matrix}x=4\\y=4\end{matrix}\right.\)

1 tháng 1 2018

2. Dễ thấy x = y = 0 không phải là nghiệm của phương trình

HPT\(\Leftrightarrow\left\{{}\begin{matrix}1-\dfrac{12}{y+3x}=\dfrac{2}{\sqrt{x}}\left(1\right)\\1+\dfrac{12}{y+3x}=\dfrac{6}{\sqrt{y}}\left(2\right)\end{matrix}\right.\)

Lấy (1) + (2) ; (1) - (2) ta được

\(\left\{{}\begin{matrix}1=\dfrac{1}{\sqrt{x}}+\dfrac{3}{\sqrt{y}}\left(3\right)\\\dfrac{12}{y+3x}=\dfrac{3}{\sqrt{y}}-\dfrac{1}{\sqrt{x}}\left(4\right)\end{matrix}\right.\)

Lấy ( 3) nhân (4)

\(\dfrac{12}{y+3x}=\dfrac{9}{y}-\dfrac{1}{x}=\dfrac{9x-y}{xy}\)

\(\Leftrightarrow27x^2-6xy-y^2=0\Leftrightarrow\left(9x+y\right)\left(3x-y\right)=0\)

\(\Rightarrow y=3x\)

đến đây thì dễ rồi

AH
Akai Haruma
Giáo viên
3 tháng 1 2020

Bài 1:

Lấy PT $(1)$ trừ PT $(2)$ ta có:

\(x^2-y^2=3y-3x\)

\(\Leftrightarrow (x-y)(x+y)+3(x-y)=0\Leftrightarrow (x-y)(x+y+3)=0\)

$\Rightarrow x-y=0$ hoặc $x+y+3=0$

Nếu $x-y=0\Leftrightarrow x=y$. Thay vào PT $(1)$:

\(x^2=3x-2\Leftrightarrow x^2-3x+2=0\Leftrightarrow (x-1)(x-2)=0\)

$\Rightarrow x=1$ hoặc $x=2$

Tương ứng ta thu được $y=1$ hoặc $y=2$

Nếu $x+y+3=0\Leftrightarrow y=-(x+3)$. Thay vào PT $(1)$:

\(x^2=-3(x+3)-2\Leftrightarrow x^2=-3x-11\Leftrightarrow x^2+3x+11=0\)

\(\Leftrightarrow (x+\frac{3}{2})^2=\frac{-35}{4}< 0\) (vô lý)

Vậy..........

AH
Akai Haruma
Giáo viên
3 tháng 1 2020

Bài 2:

Lấy PT(1) trừ PT(2) ta có:

\(2x-2y+\frac{1}{y}-\frac{1}{x}=\frac{3}{x}-\frac{3}{y}\)

\(\Leftrightarrow 2(x-y)+(\frac{4}{y}-\frac{4}{x})=0\)

\(\Leftrightarrow (x-y)+\frac{2(x-y)}{xy}=0\)

\(\Leftrightarrow (x-y).\frac{2+xy}{xy}=0\Rightarrow \left[\begin{matrix} x=y\\ xy=-2\end{matrix}\right.\)

Nếu $x=y$. Thay vào PT (1) có:

\(2x+\frac{1}{x}=\frac{3}{x}\Leftrightarrow 2x-\frac{2}{x}=0\Leftrightarrow x^2-1=0\)

\(\Rightarrow x^2=1\Rightarrow x=\pm 1\Rightarrow y=\pm 1\) (tương ứng)

Nếu $xy=-2\Rightarrow \frac{1}{y}=\frac{-x}{2}$

Thay vào PT(1): $2x-\frac{x}{2}=\frac{3}{x}$

$\Leftrightarrow x^2=2\Rightarrow x=\pm \sqrt{2}$

$\Rightarrow y=\mp \sqrt{2}$

Vậy........

NV
26 tháng 7 2021

- Với \(xy=0\) không phải nghiệm

- Với \(xy\ne0\) hệ tương đương

\(\left\{{}\begin{matrix}3x-2=\dfrac{1}{y^3}\\x^3+2=\dfrac{3}{y}\end{matrix}\right.\)

Đặt \(\dfrac{1}{y}=z\Rightarrow\left\{{}\begin{matrix}3x-2=z^3\\x^3+2=3z\end{matrix}\right.\)

\(\Rightarrow x^3+3x=z^3+3z\)

\(\Leftrightarrow x^3-z^3+3\left(x-z\right)=0\)

\(\Leftrightarrow\left(x-z\right)\left(x^2+zx+z^2+3\right)=0\)

\(\Leftrightarrow x=z\)

Thế vào \(x^3+2=3z\Rightarrow x^3+2=3x\)

\(\Leftrightarrow x^3-3x+2=0\)

\(\Leftrightarrow\left(x-1\right)^2\left(x+2\right)=0\Rightarrow\left[{}\begin{matrix}x=1\Rightarrow y=1\\x=-2\Rightarrow y=-\dfrac{1}{2}\end{matrix}\right.\)

7 tháng 10 2021

\(1,\Leftrightarrow\left\{{}\begin{matrix}x=3-y\\3-y+2y=5\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=3-y\\y=2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=2\end{matrix}\right.\\ 2,\Leftrightarrow\left\{{}\begin{matrix}x-2x-1=3\\y=2x+1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-2\\y=2\left(-2\right)+1=-3\end{matrix}\right.\\ 3,\Leftrightarrow\left\{{}\begin{matrix}2x+3x-6=4\\y=x-2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=2\\y=0\end{matrix}\right.\\ 4,\Leftrightarrow\left\{{}\begin{matrix}x=y+2\\y+2=3y+8\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=y+2\\y=-3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-1\\y=-3\end{matrix}\right.\\ 5,\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{1+y}{2}\\\dfrac{3+3y}{2}-4y=2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{1+y}{2}\\3+3y-8y=4\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{y+1}{2}\\y=-\dfrac{1}{5}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{2}{5}\\y=-\dfrac{1}{5}\end{matrix}\right.\)

NV
7 tháng 1 2022

\(x^3=3y^2-3y+1=3\left(y-\dfrac{1}{2}\right)^2+\dfrac{1}{4}\ge\dfrac{1}{4}\)

\(\Rightarrow x\ge\dfrac{1}{\sqrt[3]{4}}>\dfrac{1}{2}\)

Tương tự ta có \(y;z>\dfrac{1}{2}\)

\(\Rightarrow x+y-1>0;y+z-1>0;z+x-1>0\)

TH1: \(x\ge y\Rightarrow x^3\ge y^3\Rightarrow3y^2-3y+1\ge3z^2-3z+1\)

\(\Rightarrow y^2-z^2-y+z\ge0\Rightarrow\left(y-z\right)\left(y+z+1\right)\ge0\)

\(\Rightarrow y-z\ge0\Rightarrow y\ge z\Rightarrow x\ge z\) (1)

Cũng do \(y\ge z\Rightarrow y^3\ge z^3\)

\(\Rightarrow3z^2-3z+1\ge3x^2-3x+1\Rightarrow z^2-x^2-z+x\ge0\)

\(\Rightarrow\left(z-x\right)\left(z+x+1\right)\ge0\Rightarrow z\ge x\) (2)

Từ (1);(2) \(\Rightarrow x=y=z\)

TH2: \(x\le y\), hoàn toàn tương tự ta cũng chứng minh được \(x=y=z\)

Thay vào hệ ban đầu:

\(\left\{{}\begin{matrix}x^3-3x^2+3x=1\\y^3-3y^2+3y=1\\z^3-3z^2+3z=1\end{matrix}\right.\) \(\Rightarrow x=y=z=1\)