K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
13 tháng 12 2020

1. Với mọi số thực x;y;z ta có:

\(x^2+y^2+z^2+\dfrac{1}{2}\left(x^2+1\right)+\dfrac{1}{2}\left(y^2+1\right)+\dfrac{1}{2}\left(z^2+1\right)\ge xy+yz+zx+x+y+z\)

\(\Leftrightarrow\dfrac{3}{2}P+\dfrac{3}{2}\ge6\)

\(\Rightarrow P\ge3\)

\(P_{min}=3\) khi \(x=y=z=1\)

1.1

ĐKXĐ: ...

Đặt \(\left\{{}\begin{matrix}\dfrac{1}{\sqrt{x}}=a>0\\\dfrac{1}{\sqrt{y}}=b>0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}a+\sqrt{2-b^2}=2\\b+\sqrt{2-a^2}=2\end{matrix}\right.\)

\(\Rightarrow a-b+\sqrt{2-b^2}-\sqrt{2-a^2}=0\)

\(\Leftrightarrow a-b+\dfrac{\left(a-b\right)\left(a+b\right)}{\sqrt{2-b^2}+\sqrt{2-a^2}}=0\)

\(\Leftrightarrow a=b\Leftrightarrow x=y\)

Thay vào pt đầu:

\(a+\sqrt{2-a^2}=2\Rightarrow\sqrt{2-a^2}=2-a\) (\(a\le2\))

\(\Leftrightarrow2-a^2=4-4a+a^2\Leftrightarrow2a^2-4a+2=0\)

\(\Rightarrow a=1\Rightarrow x=y=1\)

NV
13 tháng 12 2020

2.

\(\left\{{}\begin{matrix}x^2+xy+y^2=7\\\left(x^2+y^2\right)^2-x^2y^2=21\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x^2+xy+y^2=7\\\left(x^2+xy+y^2\right)\left(x^2-xy+y^2\right)=21\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x^2+xy+y^2=7\\x^2-xy+y^2=3\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}3x^2+3xy+3y^2=21\\7x^2-7xy+7y^2=21\end{matrix}\right.\)

\(\Rightarrow4x^2-10xy+4y^2=0\)

\(\Leftrightarrow2\left(2x-y\right)\left(x-2y\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}y=2x\\y=\dfrac{1}{2}x\end{matrix}\right.\)

Thế vào pt đầu

...

NV
27 tháng 2 2021

ĐKXĐ: ...

Xét pt đầu: \(\Leftrightarrow\dfrac{x^2-2xy+y^2-1}{xy}-2+\dfrac{2}{x+y}+4=0\)

\(\Leftrightarrow\dfrac{x^2+y^2-1}{xy}+\dfrac{2}{x+y}=0\)

\(\Leftrightarrow\left(x+y\right)\left(x^2+y^2-1\right)+2xy=0\)

\(\Leftrightarrow\left(x+y-1\right)\left(x^2+y^2-1\right)+x^2+y^2-1+2xy=0\)

\(\Leftrightarrow\left(x+y-1\right)\left(x^2+y^2-1\right)+\left(x+y\right)^2-1=0\)

\(\Leftrightarrow\left(x+y-1\right)\left(x^2+y^2-1\right)+\left(x+y-1\right)\left(x+y+1\right)=0\)

\(\Leftrightarrow\left(x+y-1\right)\left(x^2+y^2+x+y\right)=0\)

Từ ĐKXĐ \(x+y-1\ge0\Rightarrow x+y\ge1\Rightarrow x^2+y^2+x+y>0\)

\(\Rightarrow x+y-1=0\Rightarrow y=1-x\)

Thế xuống pt dưới:

\(4x^2-5x+5+6\sqrt{x}=13\)

\(\Leftrightarrow4x^2-4x+1-x+6\sqrt{x}-9=0\)

\(\Leftrightarrow\left(2x-1\right)^2-\left(\sqrt{x}-3\right)^2=0\)

\(\Leftrightarrow\left[{}\begin{matrix}2x-1=\sqrt{x}-3\\2x-1=3-\sqrt{x}\end{matrix}\right.\)

\(\Leftrightarrow...\)

AH
Akai Haruma
Giáo viên
1 tháng 4 2021

Lời giải:

ĐK: $x,y>0$

PT$(2)\Rightarrow \frac{1}{\sqrt{x}}-x=y+\frac{1}{\sqrt{y}}>0$

$\Rightarrow 1-x\sqrt{x}>1\Rightarrow 1>x$

Quay lại PT $(1)$:

$2x^2=xy+1$

Nếu $y\geq x$ thì: $2x^2=xy+1\geq x^2+1\Leftrightarrow x^2\geq 1\Rightarrow x\geq 1$ (vô lý vì $x<1$)

$\Rightarrow 0<y<x$

Khi đóTại PT$(2)$: $x+y=\frac{1}{\sqrt{x}}-\frac{1}{\sqrt{y}}<0$ (vô lý vì $x,y>0$)

Vậy HPT vô nghiệm

26 tháng 5 2021

\(\left\{{}\begin{matrix}2\left(\dfrac{x^3}{y^2}+\dfrac{y^3}{x^2}\right)=\sqrt[4]{8\left(x^4+y^4\right)}+2\sqrt{xy}\left(1\right)\\16x^5-20x^3+5\sqrt{xy}=\sqrt{\dfrac{y+1}{2}}\left(2\right)\end{matrix}\right.\).

ĐKXĐ: \(xy>0;y\ge-\dfrac{1}{2}\).

Nhận thấy nếu x < 0 thì y < 0. Suy ra VT của (1) âm, còn VP của (1) dương (vô lí)

Do đó x > 0 nên y > 0.

Với a, b > 0 ta có bất đẳng thức \(\left(a+b\right)^4\le8\left(a^4+b^4\right)\).

Thật vậy, áp dụng bất đẳng thức Cauchy - Schwarz ta có:

\(\left(a+b\right)^4\le\left[2\left(a^2+b^2\right)\right]^2=4\left(a^2+b^2\right)^2\le8\left(a^4+b^4\right)\).

Dấu "=" xảy ra khi và chỉ khi a = b.

Áp dụng bất đẳng thức trên ta có:

\(\left(\sqrt[4]{8\left(x^4+y^4\right)}+2\sqrt{xy}\right)^4\le8\left[8\left(x^4+y^4\right)+16x^2y^2\right]=64\left(x^2+y^2\right)^2\)

\(\Rightarrow\left(\sqrt[4]{8\left(x^4+y^4\right)}+2\sqrt{xy}\right)^2\le8\left(x^2+y^2\right)\). (3)

Lại có \(4\left(\dfrac{x^3}{y^2}+\dfrac{y^3}{x^2}\right)^2=4\left(\dfrac{x^6}{y^4}+2xy+\dfrac{y^6}{x^4}\right)\). (4) 

Áp dụng bất đẳng thức AM - GM ta có \(\dfrac{x^6}{y^4}+xy+xy+xy+xy\ge5x^2;\dfrac{y^6}{x^4}+xy+xy+xy+xy\ge5y^2;3\left(x^2+y^2\right)\ge6xy\).

Cộng vế với vế của các bđt trên lại rồi tút gọn ta được \(\dfrac{x^6}{y^4}+2xy+\dfrac{y^6}{x^4}\ge2\left(x^2+y^2\right)\). (5)

Từ (3), (4), (5) suy ra \(4\left(\dfrac{x^3}{y^2}+\dfrac{y^3}{x^2}\right)^2\ge\left(\sqrt[4]{8\left(x^4+y^4\right)}+2\sqrt{xy}\right)^2\Rightarrow2\left(\dfrac{x^3}{y^2}+\dfrac{y^3}{x^2}\right)\ge\sqrt[4]{8\left(x^4+y^4\right)}+2\sqrt{xy}\).

Do đó đẳng thức ở (1) xảy ra nên ta phải có x = y.

Thay x = y vào (2) ta được:

\(16x^5-20x^3+5x=\sqrt{\dfrac{x+1}{2}}\). (ĐK: \(x>0\))

PT này có một nghiệm là x = 1 mà sau đó không biết giải ntn :v

 

 

10 tháng 2 2021

\(\left\{{}\begin{matrix}\sqrt{x}+\dfrac{3}{\sqrt{x}}=\sqrt{y}+\dfrac{3}{\sqrt{y}}\left(1\right)\\2x-\sqrt{xy}-1=0\left(2\right)\end{matrix}\right.\) đk : x>=; y>=0

Ta có (1) <=> \(\left(\sqrt{x}-\sqrt{y}\right)-\left(\dfrac{3}{\sqrt{y}}-\dfrac{3}{\sqrt{x}}\right)=0\)

<=> \(\left(\sqrt{x}-\sqrt{y}\right)-3\dfrac{\sqrt{x}-\sqrt{y}}{\sqrt{xy}}=0\)

<=> \(\left(\sqrt{x}-\sqrt{y}\right)\left(1-\dfrac{3}{\sqrt{xy}}\right)=0\)

<=> \(\left[{}\begin{matrix}x=y\\\sqrt{xy}=3\end{matrix}\right.\)

+) với x=y, thay vào (2) ta có:

\(2x-\sqrt{x^2}-1=0\)

<=> 2x- x-1=0(do x>0)

<=> x=1 => y =1(t/m)

+) với \(\sqrt{xy}=3\) thay vào (2) ta có :

2x - 3-1 =0

<=> x= 2 (tm) => y = 9/2

Vậy hệ có nghiệm (x;y) là (1;1), (2;\(\dfrac{9}{2}\) )