Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
x2+y2=xy+2 (1) <=>x2+xy+y2=2xy+2 (1')
x3-2x=6y+y3<=>x3-y3=2x+6y<=>(x-y)(x2+xy+y2)=2x+6y (2)
the (1') vao (2)<=>(x-y)(2xy+2)=2x+6y<=>2x2y-2xy2+2x-2y=2x+6y<=>2x2y-2xy2-8y=0
<=>2y(x2-xy-4)=0 <=>x2-xy-4=0 hoac y=0
truong hop: y=0 thay vao (1) ta dc x2=2 =>x= hoac x=
truong hop: x2-xy-4=0
ta dc he moi:
x2+y2=xy+2 (1)
x2 =xy+4 (3)
lay pt (1)-(3) ta dc y2= -2 (vo ly)
=>he moi vo nghiem
Vay he pt da cho co 2 nghiem
hằng đẳng thức : x^3 -y^3=(x-y)(x^2-xy+y^2) bạn viết sai ạ
\(a,\hept{\begin{cases}x^2-3y=2\\9y^2-8x=8\end{cases}}\)
\(x^2-3y=2\)
\(y=\frac{1^2-2}{3}\)
\(9-\left(\frac{x^2-2}{3}\right)^2-8x=8\)
\(\Rightarrow x^4-4x^2+4-8x-8=0\)
\(\Rightarrow x^4-4x^2-8x-4=0\)
\(\Rightarrow\left(x^2-2x-2\right)\left(x^2+2x+2\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=1+\sqrt{3}\\x=1-\sqrt{3}\end{cases}}\Leftrightarrow\orbr{\begin{cases}y=\frac{2+2\sqrt{3}}{3}\\y=\frac{2-2\sqrt{3}}{3}\end{cases}}\)
Vậy ................................