Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1:
a) \(\frac{2}{\sqrt{3}-1}-\frac{2}{\sqrt{3}+1}\)
\(=\frac{2\left(\sqrt{3}+1\right)}{\left(\sqrt{3}-1\right)\left(\sqrt{3}+1\right)}-\frac{2\left(\sqrt{3}-1\right)}{\left(\sqrt{3}+1\right)\left(\sqrt{3}-1\right)}\)
\(=\frac{2\left(\sqrt{3}+1\right)}{2}-\frac{2\left(\sqrt{3}-1\right)}{2}\)
\(=\sqrt{3}+1-\left(\sqrt{3}-1\right)=2\)
b) \(\frac{2}{5-\sqrt{3}}+\frac{3}{\sqrt{6}+\sqrt{3}}\)
\(=\frac{2\left(5+\sqrt{3}\right)}{\left(5-\sqrt{3}\right)\left(5+\sqrt{3}\right)}+\frac{3\left(\sqrt{6}-\sqrt{3}\right)}{\left(\sqrt{6}+\sqrt{3}\right)\left(\sqrt{6}-\sqrt{3}\right)}\)
\(=\frac{2\left(5+\sqrt{3}\right)}{2}+\frac{3\left(\sqrt{6}-\sqrt{3}\right)}{3}\)
\(=5+\sqrt{3}+\sqrt{6}-\sqrt{3}=5+\sqrt{6}\)
c) ĐK: \(a\ge0;a\ne1\)
\(\left(1+\frac{a+\sqrt{a}}{1+\sqrt{a}}\right).\left(1-\frac{a-\sqrt{a}}{\sqrt{a}-1}\right)+a\)
\(=\left(1+\frac{\sqrt{a}\left(\sqrt{a}+1\right)}{1+\sqrt{a}}\right).\left(1-\frac{\sqrt{a}\left(\sqrt{a}-1\right)}{\sqrt{a}-1}\right)+a\)
\(=\left(1+\sqrt{a}\right)\left(1-\sqrt{a}\right)+a\)
\(=1-a+a=1\)
c,Có x=\(\frac{1}{2}\left(\sqrt{\frac{1-a}{a}}-\sqrt{\frac{a}{1-a}}\right)\left(0< a< 1\right)\)
<=> \(x=\frac{1}{2}\left(\frac{\sqrt{1-a}}{\sqrt{a}}-\frac{\sqrt{a}}{\sqrt{1-a}}\right)\) (vì 0<a<1)
<=>\(x=\frac{1}{2}.\frac{\sqrt{1-a}^2-\sqrt{a}^2}{\sqrt{a}.\sqrt{1-a}}=\frac{1}{2}.\frac{1-a-a}{\sqrt{a\left(1-a\right)}}=\frac{1}{2}.\frac{1-2a}{\sqrt{a\left(1-a\right)}}=\frac{1-2a}{2\sqrt{a\left(1-a\right)}}\)(1)
<=> 1+x2=1+\(\frac{1}{4}.\frac{\left(1-2a\right)^2}{a\left(1-a\right)}\)= \(\frac{4a\left(1-a\right)+\left(1-2a\right)^2}{4a\left(1-a\right)}\)
<=> 1+x2=\(\frac{4a-4a^2+1-4a+4a^2}{4a\left(1-a\right)}=\frac{1}{4a\left(1-a\right)}\)>0
<=> \(\sqrt{1+x^2}=\frac{1}{2\sqrt{a\left(1-a\right)}}\) (2)
Thay (1),(2) vào C có:
C= \(\frac{2a.\frac{1}{2\sqrt{a\left(1-a\right)}}}{\frac{1}{2\sqrt{a\left(1-a\right)}}-\frac{1-2a}{2\sqrt{a\left(1-a\right)}}}=\frac{\frac{a}{\sqrt{a\left(1-a\right)}}}{\frac{1-1+2a}{2\sqrt{a\left(1-a\right)}}}=\frac{\frac{a}{\sqrt{a\left(1-a\right)}}}{\frac{2a}{2\sqrt{a\left(1-a\right)}}}=1\)
Vậy C=1
P2\(=\left(\frac{1-A\sqrt{A}}{1-\sqrt{A}}+\sqrt{A}\right).\left(\frac{1-\sqrt{A}}{1-A}\right)^2\)\(=\left(\frac{1-A\sqrt{A}+\sqrt{A}-A}{1-\sqrt{A}}\right).\frac{\left(1-\sqrt{A}\right)^2}{\left(1-A\right)^2}\)\(=\frac{\left(\sqrt{A}+1\right)\left(1-A\right)}{1-\sqrt{A}}.\frac{\left(1-\sqrt{A}\right)^2}{\left(1-\sqrt{A}\right)^2\left(1+\sqrt{A}\right)^2}\)
\(=\left(\sqrt{A}+1\right)^2.\frac{1}{\left(1+\sqrt{A}\right)^2}=1\)