Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a,\frac{15x^2y^4}{5x^3z}=\frac{3y^4}{x}\)
\(b,\frac{x^2-4x+4}{x^2-4}=\frac{\left(x-2\right)^2}{\left(x-2\right)\left(x+2\right)}=\frac{x-2}{x+2}\)
\(c,\frac{5x^2+10xy+5y^2}{15x+15y}=\frac{5\left(x^2+2xy+y^2\right)}{15\left(x+y\right)}=\frac{5\left(x+y\right)^2}{15\left(x+y\right)}=\frac{x+y}{3}\)
\(d,\frac{2x^3-2}{11x^2-22x+11}=\frac{2\left(x^3-1\right)}{11\left(x^2-2x+1\right)}=\frac{2\left(x-1\right)\left(x^2+x+1\right)}{11\left(x-1\right)^2}=\frac{2\left(x^2+x+1\right)}{11\left(x-1\right)}\)
\(5x^2-10xy+5y^2-20z^2=5\left(x^2-2xy+y^2-4z^2\right)=5.\left[\left(x-y\right)^2-\left(2z\right)^2\right]=5.\left(x-y-2z\right).\left(x-y+2z\right)\)
\(x^2-z^2+y^2-2xy=\left(x-y\right)^2-z^2=\left(x-y+z\right)\left(x-y-z\right)\)
\(x^2-2xy-4z^2+y^2=\left(x-y\right)^2-4z^2=\left(x-y-2z\right)\left(x-y+2z\right)\)
a) 5x2 - 10xy + 5y2
= 5 (x2 - 2xy + y2)
= 5 (x - y)2
b) x2 - z2 + y2 - 2xy
= (x2 + y2 - 2xy) - z2
= (x2 - 2xy + y2) - z2
= (x - y)2 - z2
= (x - y + z)(x - y - z)
c) x2 - 6xy - 25z2 : hinh nhu de bi sai , ban xem lai giup minh
d) x2 - 2xy - 4z2 + y2
= (x2 - 2xy + y2) - 4z2
= (x - y)2 - (2z)2
= (x - y + 2z)(x - y - 2z)
Chuc ban hoc tot
a: \(=\dfrac{3x-x+6}{x\left(2x+6\right)}=\dfrac{1}{x}\)
b: \(=\dfrac{1}{x\left(y-x\right)}-\dfrac{1}{y\left(y-x\right)}\)
\(=\dfrac{y-x}{xy\left(y-x\right)}=\dfrac{1}{xy}\)
c: \(=\dfrac{\left(1-2x\right)\left(1+2x\right)}{x\left(x+4\right)}\cdot\dfrac{3x}{2\left(1-2x\right)}\)
\(=\dfrac{3\left(1+2x\right)}{2\left(x+4\right)}\)
d: \(=\dfrac{12x}{8x^3}\cdot\dfrac{15y^4}{5y^3}=\dfrac{3}{2x^2}\cdot3y=\dfrac{9y}{2x^2}\)
f: \(=\dfrac{\left(x-2\right)\left(x+2\right)}{3\left(x+4\right)}\cdot\dfrac{x+4}{2\left(x-2\right)}=\dfrac{x+2}{6}\)
= 5. (x^2 -2xy +y^2 - 4z^2)
= 5. (x^2 - 2xy +y^2) - 4z^2
= 5. (x - y)^2 - (2z)^2
= 5. [(x - y) - 2z].[(x - y) + 2z]
=5. (x - y - 2z). (x - y + 2z)
A = ( x + y )2 = 5 ( x - y ) + 1
A = 9 = 5( x - y ) + 1
A = 8 = 5 ( x - y )
A = 1,6 = x + y
=> A = 1,6
chắc sai
cứ tham khảo
\(a,10.a^6+20a^5=10a^5\left(a+2\right)\)
\(b,5x^2-10xy+5y^2=5\left(x^2-2xy+y^2\right)=5\left(x-y\right)^2\)
\(c,3ab^3+6ab^2-18ab=3ab\left(b^2+2b-1\right)\)
\(d,15x^3y^2+10x^2y^2-20x^2y^3=5x^2y^2\left(3x+2-4y\right)\)
\(e,a^2\left(x-1\right)-b\left(1-x\right)=a^2\left(x-1\right)+b\left(x-1\right)=\left(x-1\right)\left(a^2+b\right)\)
\(f,x\left(x-5\right)-4\left(5-x\right)=x\left(x-5\right)+4\left(x-5\right)=\left(x-5\right)\left(x+4\right)\)
(mk sửa lại thứ tự là a,b,c,d,e,f nha)
chúc bn học tốt
\(1,10a^6+20a^5=10a^5\left(a+10\right)\)
\(2,5x^2-10xy+5y^2=5\left(x^2-2xy+y^2\right)\)
\(=5\left(x-y\right)^2\)
\(3,3ab^3+6ab^2-18ab\)
\(=3ab\left(b^2+2b-6\right)\)
\(4,15x^3y^2+10x^2y^2-20x^2y^3\)
\(=5x^2y^2\left(3x+2-4y\right)\)
\(5,a^2\left(x-1\right)-b\left(1-x\right)\)
\(=a^2\left(x-1\right)+b\left(x-1\right)\)
\(=\left(x-1\right)\left(a^2+b\right)\)
\(6,x\left(x-5\right)-4\left(5-x\right)\)
\(=x\left(x-5\right)+4\left(x-5\right)\)
\(=\left(x+4\right)\left(x-5\right)\)
Ta có: 5( x^2 +2xy +y^2 ) = 5(x+y)^2