Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\Leftrightarrow\left\{{}\begin{matrix}\frac{x-1+2}{x-1}+\frac{3\left(y+2\right)-6}{y+2}=7\\\frac{2}{x-1}-\frac{5}{y+2}=4\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}1+\frac{2}{x-1}+3-\frac{6}{y+2}=7\\\frac{2}{x-1}-\frac{5}{y+2}=4\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}\frac{2}{x-1}-\frac{6}{y+2}=3\\\frac{2}{x-1}-\frac{5}{y+2}=4\end{matrix}\right.\)
đặt \(\left\{{}\begin{matrix}a=\frac{1}{x-1}\\b=\frac{1}{y+2}\end{matrix}\right.\) ta có : \(\left\{{}\begin{matrix}2a-6b=3\\2a-5b=4\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}2a=6b+3\\b=1\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}a=\frac{9}{2}\\b=1\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}\frac{1}{x-1}=\frac{9}{2}\\\frac{1}{y+2}=1\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x-1=\frac{2}{9}\\y+2=1\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=\frac{11}{9}\\y=-1\end{matrix}\right.\)
ĐKXĐ: \(xy\ne0\)
\(\Leftrightarrow\left\{{}\begin{matrix}x\left(y^2-4y+2\right)=-y\\\frac{1}{x}\left(y+\frac{1}{y}\right)=3-\frac{1}{y^2}\end{matrix}\right.\)
Do các vế của 2 pt đều khác 0, nhân vế với vế:
\(\left(y+\frac{1}{y}\right)\left(y^2-4y+2\right)=-y\left(3-\frac{1}{y^2}\right)\)
\(\Leftrightarrow y^3-4y^2+6y-4+\frac{1}{y}=0\)
\(\Leftrightarrow y^4-4y^3+6y^2-4y+1=0\)
Chia 2 vế của pt cho \(y^2\) :
\(y^2+\frac{1}{y^2}-4\left(y+\frac{1}{y}\right)+6=0\)
Đặt \(y+\frac{1}{y}=t\Rightarrow y^2+\frac{1}{y^2}=t^2-2\)
\(\Rightarrow t^2-4t+4=0\Rightarrow t=2\Rightarrow y+\frac{1}{y}=2\Rightarrow y=1\)
b/ ĐKXĐ:
Đặt \(\left\{{}\begin{matrix}x^2+y^2-1=a\\\frac{y}{x}=b\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}a+4b=21\\\frac{3}{a}+\frac{2}{b}=1\end{matrix}\right.\)
Một hệ pt hết sức bình thường, chắc bạn giải ngon lành :D
Phạm Thị Diệu Huyền, Vũ Minh Tuấn, Trên con đường thành công không có dấu chân của kẻ lười biếng, Nguyễn Lê Phước Thịnh, Phạm Minh Quang, Phạm Lan Hương, Mysterious Person, Trần Thanh Phương, hellokoko,
@tth_new, @Nguyễn Việt Lâm, @Akai Haruma
Giúp em với ạ! Cần gấp lắm ạ! Thanks!
a/ Đơn giản là dùng phép thế:
\(x+2y+x+y+z=0\Rightarrow x+2y=0\Rightarrow x=-2y\)
\(x+y+z=0\Rightarrow z=-\left(x+y\right)=-\left(-2y+y\right)=y\)
Thế vào pt cuối:
\(\left(1-2y\right)^2+\left(y+2\right)^2+\left(y+3\right)^2=26\)
Vậy là xong
b/ Sử dụng hệ số bất định:
\(\left\{{}\begin{matrix}a\left(\frac{x}{3}+\frac{y}{12}-\frac{z}{4}\right)=a\\b\left(\frac{x}{10}+\frac{y}{5}+\frac{z}{3}\right)=b\end{matrix}\right.\)
\(\Rightarrow\left(\frac{a}{3}+\frac{b}{10}\right)x+\left(\frac{a}{12}+\frac{b}{5}\right)y+\left(\frac{-a}{4}+\frac{b}{3}\right)z=a+b\) (1)
Ta cần a;b sao cho \(\frac{a}{3}+\frac{b}{10}=\frac{a}{12}+\frac{b}{5}=-\frac{a}{4}+\frac{b}{3}\)
\(\Rightarrow\left\{{}\begin{matrix}\frac{a}{3}+\frac{b}{10}=\frac{a}{12}+\frac{b}{5}\\\frac{a}{3}+\frac{b}{10}=-\frac{a}{4}+\frac{b}{3}\end{matrix}\right.\) \(\Rightarrow\frac{a}{2}=\frac{b}{5}\)
Chọn \(\left\{{}\begin{matrix}a=2\\b=5\end{matrix}\right.\) thay vào (1):
\(\frac{7}{6}\left(x+y+z\right)=7\Rightarrow x+y+z=6\)
a)pt đầu\(\Leftrightarrow y=x+1\)
Thay vào pt sau:
\(\frac{2}{x}+\frac{2}{x+1}=2\)Đk:\(x,y\ne0,x\ne-1\)
\(\Rightarrow x+1+x=x^2+x\)
\(\Leftrightarrow x^2-x-1=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\frac{1+\sqrt{5}}{2}\\x=\frac{1-\sqrt{5}}{2}\end{matrix}\right.\)\(\Rightarrow\left[{}\begin{matrix}y=\frac{3+\sqrt{5}}{2}\\y=\frac{3-\sqrt{5}}{2}\end{matrix}\right.\)
Vậy.....
b)pt đầu\(\Leftrightarrow x=\frac{2}{y}+1\)
Thay vào pt sau:
\(\frac{14}{y}=4\Leftrightarrow y=\frac{7}{2}\)\(\Rightarrow x=\frac{11}{7}\)
Vậy .....
mình hơi làm biếng nên ko làm rõ ràng, chắc sẽ có 1 số bạn khác giải jup. Mình gọi trên dưới lần lượt là (1), (2)
a)Chỉ cần dùng pp thế Ở pt (1) : x=-1+y r thế vào pt (2) rồi giải
b) Quá đơn giản bạn chỉ cần nhân pt (1) cho 2 rùi khử hệ y giải
bài này mình ko làm nhưng mong bạn hỉu ý mình nói
ĐKXĐ: ...
\(\Leftrightarrow\left\{{}\begin{matrix}2\sqrt{4x-1}+\frac{2y}{2y+3}=2\\3\sqrt{4x-1}+\frac{3}{2y+3}=-1\end{matrix}\right.\)
\(\Rightarrow5\sqrt{4x-1}+\frac{2y+3}{2y+3}=1\)
\(\Leftrightarrow5\sqrt{4x-1}=0\Rightarrow4x-1=0\Rightarrow x=\frac{1}{4}\)
Thay vào pt trên:
\(\frac{y}{2y+3}=1\Leftrightarrow y=2y+3\Rightarrow y=-3\)
\(\left\{{}\begin{matrix}2\sqrt{x-3}+\frac{12}{y-2x}=8\\3\sqrt{4x-12}+\frac{3}{2x-y}=\frac{9}{2}\end{matrix}\right.\) \(Đkxđ:\left\{{}\begin{matrix}x\ge3\\y\ne2x\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}2\sqrt{x-3}+\frac{12}{y-2x}=8\\6\sqrt{x-3}+\frac{3}{2x-y}=\frac{9}{2}\end{matrix}\right.\)
Đặt: \(\left\{{}\begin{matrix}2\sqrt{x-3}=a\left(a>0\right)\\\frac{3}{2x-y}=b\end{matrix}\right.\)
Ta được phương trình mới:
\(\left\{{}\begin{matrix}a-4b=8\\3a+b=\frac{9}{2}\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}a=2\\b=\frac{3}{2}\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}2\sqrt{x-3}=2\\\frac{3}{2x-y}=-\frac{3}{2}\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x-3=1\\2x-y=-2\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=4\\y=10\end{matrix}\right.\)
Vậy ..........
ĐKXĐ: ...
Đặt \(\left\{{}\begin{matrix}\frac{1}{x}=u\\\frac{1}{y}=v\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}\frac{3}{5}u+v=10\\\frac{3}{4}u+\frac{3}{4}v=12\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}3u+5v=50\\3u+3v=48\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}v=1\\u=15\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}\frac{1}{x}=15\\\frac{1}{y}=1\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=\frac{1}{15}\\y=1\end{matrix}\right.\)