Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt 4X - 19 =a; 4X -20 =b => 8X-39 = a + b
Từ đó ta có:
a^4 + b^4 = (a+b)^4 = a^4 + b^4 + 4a^3.b + 6a^2b^2 + 4ab^3
=> 4a^3.b + 6a^2.b^2 + 4a.b^3 = 0
ab(4a^2 + 6ab + 4b^2) =0
=> ab = 0 hoặc 4a^2 + 6ab +4b^2 = 0
TH1: ab = 0 -> 4x -19 =0 hoặc 4x-20 =0 => x =19/4 hoặc x = 20/4 =5
TH2: 4a^2 + 6ab +4b^2 = 0 => 2a^2 + 3ab +2b^2 = 0
Mà a - b = 1 ->a = 1+b
Thế vào ta có: 2(1+b)^2 + 3(1+b)+2b^2
= 2(1+2b+b^2) + 3b +3 + 2b^2
= 4b^2 + 7b +5
detal = 7*7 - 4*4*5 < 0 , phương trình vô nghiệm b
Vậy Phương trình ban đầu có 2 nghiệm X1 = 19/4, X2 =5
ĐKXĐ: \(x\ne0\)
Phương trình tương đương:
\(\dfrac{4}{4x-8+\dfrac{7}{x}}+\dfrac{3}{4x-10+\dfrac{7}{x}}=1\)
Đặt \(4x-10+\dfrac{7}{x}=t\)
\(\Rightarrow\dfrac{4}{t+2}+\dfrac{3}{t}=1\)
\(\Rightarrow4t+3\left(t+2\right)=t\left(t+2\right)\)
\(\Leftrightarrow t^2-5t-6=0\Rightarrow\left[{}\begin{matrix}t=-1\\t=6\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}4x-10+\dfrac{7}{x}=-1\\4x-10+\dfrac{7}{x}=6\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}4x^2-9x+7=0\left(vn\right)\\4x^2-16x+7=0\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=\dfrac{7}{2}\\x=\dfrac{1}{2}\end{matrix}\right.\)
pt <=> x^4+8x-4x^3-5 = 0
<=> (x^4-x^3)-(3x^3-3x)+(5x-5) = 0
<=> x^3.(x-1)-3.x.(x-1).(x+1)+5.(x-1) = 0
<=> (x-1).(x^3-3x^2-3x+5) = 0
<=> (x-1).[(x^3-x^2)-(2x^2-2x)-(5x-5)] = 0
<=> (x-1)^2.(x^2-2x-5) = 0
<=> x-1=0 hoặc x^2-2x-5=0
<=> x=1 hoặc x = \(1+-\sqrt{6}\)
Vậy ...............
Tk mk nha
ĐK: x khác 1; - 1
\(\frac{6}{x^2-1}+5=\frac{8x-1}{4x+4}-\frac{12x-1}{4-4x}.\)
<=> \(\frac{6}{x^2-1}+5=\frac{8x-1}{4x+4}+\frac{12x-1}{4x-4}.\)
<=> \(\frac{6.4}{4\left(x^2-1\right)}+\frac{5\left(x^2-1\right)}{4\left(x^2-1\right)}=\frac{\left(8x-1\right)\left(x-1\right)}{4\left(x^2-1\right)}+\frac{\left(12x-1\right)\left(x+1\right)}{4\left(x^2-1\right)}.\)
<=> \(24+20x^2-20=8x^2-x-8x+1+12x^2-x+12x-1\)
<=> \(2x=4\)
<=> x = 2 thỏa mãn.
anh ơi, vậy là sai đề hả anh, chứ đề kêu chứng minh phương trình vô nghiệm mà em thấy anh ghi x=2
\(\frac{x^2-2x+2}{x-1}+\frac{x^2-8x+20}{x-4}=\frac{x^2-4x+6}{x-2}+\frac{x^2-6x+12}{x-3}\)\(ĐKXĐ:x\ne1;2;3;4\)
\(\Leftrightarrow\frac{\left(x-1\right)^2+1}{x-1}+\frac{\left(x-4\right)^2+4}{x-4}=\frac{\left(x-2\right)^2+2}{x-2}+\frac{\left(x-3\right)^2+3}{x-3}\)
\(\Leftrightarrow\left(\frac{\left(x-1\right)^2}{x-1}+\frac{1}{x-1}\right)+\left(\frac{\left(x-4\right)^2}{x-4}+\frac{4}{x-4}\right)=\left(\frac{\left(x-2\right)^2}{x-2}+\frac{2}{x-2}\right)+\left(\frac{\left(x-3\right)^2}{x-3}+\frac{3}{x-3}\right)\)
\(\Leftrightarrow x-1+\frac{1}{x-1}+x-4+\frac{1}{x-4}=x-2+\frac{1}{x-2}+x-3+\frac{1}{x-3}\)
\(\Leftrightarrow\frac{1}{x-1}+\frac{4}{x-4}=\frac{2}{x-2}+\frac{3}{x-3}\)
\(\Leftrightarrow\frac{x-4+4x-4}{\left(x-1\right)\left(x-4\right)}=\frac{2x-6+3x-6}{\left(x-2\right)\left(x-3\right)}\)
\(\Leftrightarrow\frac{5x-8}{x^2-5x+4}=\frac{5x-12}{x^2-5x+6}\)
\(\Leftrightarrow\left(5x-8\right)\left(x^2-5x+6\right)=\left(5x-12\right)\left(x^2-5x+4\right)\)
Tự giải ra rồi tìm x nhé
dấu suy ra số 4 là 1/(x+1) + 1/(x+4) mà.
\(ĐKXĐ:x\ne\pm1\)
\(\frac{6}{x^2-1}+5=\frac{8x-1}{4x+4}-\frac{12x-1}{4-4x}\)
\(\Leftrightarrow\frac{6}{\left(x-1\right)\left(x+1\right)}+5-\frac{8x-1}{4\left(x+1\right)}-\frac{12x-1}{4\left(x-1\right)}=0\)
\(\Leftrightarrow\frac{24+20\left(x^2-1\right)-\left(8x-1\right)\left(x-1\right)-\left(12x-1\right)\left(x+1\right)}{4\left(x-1\right)\left(x+1\right)}=0\)
\(\Leftrightarrow24+20x^2-20-8x^2+9x-1-12x^2-11x+1=0\)
\(\Leftrightarrow-2x+4=0\)
\(\Leftrightarrow x=2\)
Vậy tập nghiệm của phương trình là \(S=\left\{2\right\}\)
ĐKXĐ: \(x\ne\pm1\)
\(\frac{6}{x^2-1}+5=\frac{8x-1}{4x+4}-\frac{12x-1}{4-4x}\)
\(\Leftrightarrow\frac{6}{\left(x+1\right)\left(x-1\right)}+5=\frac{8x-1}{4\left(x+1\right)}-\frac{12x-1}{4\left(1-x\right)}\)
\(\Leftrightarrow24\left(1-x\right)+20\left(x+1\right)\left(x-1\right)\left(1-x\right)=\left(8x-1\right)\left(x-1\right)\left(1-x\right)\)\(-\left(12x-1\right)\left(x+1\right)\left(1-x\right)\)
\(\Leftrightarrow4-4x+20x^2-20x^3=18x^2-20x^3+2x\)
\(\Leftrightarrow4-4x+20x^2=18x^2+2x\)
\(\Leftrightarrow4-4x+20x^2-18x^2-2x=0\)
Nhầm đề, ghi lại: Giải phương trình ( 8x - 4x^2 - 1)( x^2 + 2x+ 1) = 4( x^2 +x +1)
Đặt a=4x-19; b=4x-20
=>a^4+b^4=(a+b)^4
=>4a^3b+6a^2b^2+4ab^2=0
=>ab(4a^2+6ab+4b)=0
=>(4x-19)(4x-20)=0
=>x=19/4 hoặc x=20/4=5