Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1/
a/ ĐKXĐ: ...
\(A=\frac{\left(\sqrt{x}+1\right)\left(2\sqrt{x}-1\right)}{\left(1-\sqrt{x}\right)\left(1+\sqrt{x}\right)}+\frac{\sqrt{x}\left(\sqrt{x}+1\right)\left(2\sqrt{x}-1\right)}{\left(\sqrt{x}+1\right)\left(x-\sqrt{x}+1\right)}\)
\(=\left(2\sqrt{x}-1\right)\left(\frac{x-\sqrt{x}+1+\sqrt{x}\left(1-\sqrt{x}\right)}{\left(1-\sqrt{x}\right)\left(x-\sqrt{x}+1\right)}\right)\)
\(=\frac{2\sqrt{x}-1}{\left(1-\sqrt{x}\right)\left(x-\sqrt{x}+1\right)}\)
Câu b không rút gọn được, lập phương lên thì biểu thức là nghiệm của pt \(x^3+6x-6=0\) ko có nghiệm đẹp
Bài 2:
a/ ĐKXĐ: \(x\ge2\)
\(\Leftrightarrow\sqrt{\left(x-1\right)\left(x-2\right)}-\sqrt{x-2}-\sqrt{\left(x-1\right)\left(x+3\right)}+\sqrt{x+3}=0\)
\(\Leftrightarrow\sqrt{x-2}\left(\sqrt{x-1}-1\right)-\sqrt{x+3}\left(\sqrt{x-1}-1\right)=0\)
\(\Leftrightarrow\left(\sqrt{x-2}-\sqrt{x+3}\right)\left(\sqrt{x-1}-1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x-1}=1\\\sqrt{x-2}=\sqrt{x+3}\left(vn\right)\end{matrix}\right.\) \(\Rightarrow x=2\)
2/
b/
\(\Leftrightarrow\sqrt{\left(x-4\right)\left(2x-1\right)}+3\sqrt{2x-1}=\sqrt{\left(x+11\right)\left(2x-1\right)}\)
Để phương trình đã cho xác định thì:
\(\left\{{}\begin{matrix}\left(x-4\right)\left(2x-1\right)\ge0\\2x-1\ge0\\\left(x+11\right)\left(2x-1\right)\ge0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}\left[{}\begin{matrix}x\ge4\\x\le\frac{1}{2}\left(1\right)\end{matrix}\right.\\x\ge\frac{1}{2}\left(2\right)\end{matrix}\right.\)
Từ (1) và (2) \(\Rightarrow x=\frac{1}{2}\) thay vào pt thấy thỏa mãn
Vậy \(x=\frac{1}{2}\) là nghiệm duy nhất
c/ ĐKXĐ: ...
\(\Leftrightarrow x^2-2x+1+2017x-2016-2\sqrt{2017x-2016}+1=0\)
\(\Leftrightarrow\left(x-1\right)^2+\left(\sqrt{2017x-2016}-1\right)^2=0\)
\(\Leftrightarrow\left\{{}\begin{matrix}x-1=0\\\sqrt{2017x-2016}-1=0\end{matrix}\right.\) \(\Rightarrow x=1\)
d/ \(\Leftrightarrow\sqrt{\left(1+x^2\right)^3}-1+3x^4-4x^3=0\)
\(\Leftrightarrow\frac{\left(1+x^2\right)^3-1}{\left(1+x^2\right)^3+1}+x^2\left(3x^2-4x\right)=0\)
\(\Leftrightarrow\frac{x^6+3x^4+3x^2}{\left(1+x^2\right)^2+1}+x^2\left(3x^2-4x\right)=0\)
\(\Leftrightarrow x^2\left(\frac{x^4+3x^3+3}{x^4+2x^2+2}+3x^2-4x\right)=0\)
\(\Rightarrow x=0\)
a) Ta có: \(\sqrt{25x+75}+3\sqrt{x-2}=2\sqrt{x-2}+\sqrt{9x-18}\)
\(\Leftrightarrow5\sqrt{x+3}+3\sqrt{x-2}=2\sqrt{x-2}+3\sqrt{x-2}\)
\(\Leftrightarrow\sqrt{25x+75}=\sqrt{4x-8}\)
\(\Leftrightarrow25x-4x=-8-75\)
\(\Leftrightarrow21x=-83\)
hay \(x=-\dfrac{83}{21}\)
b) Ta có: \(\sqrt{\left(2x-1\right)^2}=4\)
\(\Leftrightarrow\left|2x-1\right|=4\)
\(\Leftrightarrow\left[{}\begin{matrix}2x-1=4\\2x-1=-4\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}2x=5\\2x=-3\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{5}{2}\\x=-\dfrac{3}{2}\end{matrix}\right.\)
c) Ta có: \(\sqrt{\left(2x+1\right)^2}=3x-5\)
\(\Leftrightarrow\left|2x+1\right|=3x-5\)
\(\Leftrightarrow\left[{}\begin{matrix}2x+1=3x-5\left(x\ge-\dfrac{1}{2}\right)\\2x+1=5-3x\left(x< \dfrac{1}{2}\right)\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}2x-3x=-5-1\\2x+3x=5-1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=6\left(nhận\right)\\x=\dfrac{4}{5}\left(loại\right)\end{matrix}\right.\)
d) Ta có: \(\sqrt{4x-12}-14\sqrt{\dfrac{x-2}{49}}=\sqrt{9x-18}+8\)
\(\Leftrightarrow2\sqrt{x-3}-2\sqrt{x-2}=3\sqrt{x-2}+8\)
\(\Leftrightarrow2\sqrt{x-3}-5\sqrt{x-2}=8\)
\(\Leftrightarrow4\left(x-3\right)+25\left(x-2\right)-20\sqrt{x^2-5x+6}=8\)
\(\Leftrightarrow4x-12+25x-50-8=20\sqrt{\left(x-2\right)\left(x-3\right)}\)
\(\Leftrightarrow20\sqrt{\left(x-2\right)\left(x-3\right)}=29x-70\)
\(\Leftrightarrow x^2-5x+6=\dfrac{\left(29x-70\right)^2}{400}\)
\(\Leftrightarrow x^2-5x+6=\dfrac{841}{400}x^2-\dfrac{203}{20}x+\dfrac{49}{4}\)
\(\Leftrightarrow\dfrac{-441}{400}x^2+\dfrac{103}{20}x-\dfrac{25}{4}=0\)
\(\Delta=\left(\dfrac{103}{20}\right)^2-4\cdot\dfrac{-441}{400}\cdot\dfrac{-25}{4}=-\dfrac{26}{25}\)(Vô lý)
vậy: Phương trình vô nghiệm
a) \(\text{Đ}K\text{X}\text{Đ}:\frac{3}{2}\le x\le\frac{5}{2}\)
Áp dụng BĐT Bunhiacopxki ta có:
\(VT=\sqrt{2x-3}+\sqrt{5-2x}\le\sqrt{2\left(2x-3+5-2x\right)}=2\)
Dấu '=' xảy ra khi \(\sqrt{2x-3}=\sqrt{5-2x}\Leftrightarrow x=2\)
Lại có: \(VP=3x^2-12x+14=3\left(x-2\right)^2+2\ge2\)
Dấu '=' xảy ra khi x=2
Do đó VT=VP khi x=2
b) ĐK: \(x\ge0\). Ta thấy x=0 k pk là nghiệm của pt, chia 2 vế cho x ta có:
\(x^2-2x-x\sqrt{x}-2\sqrt{x}+4=0\Leftrightarrow x-2-\sqrt{x}-\frac{2}{\sqrt{x}}+\frac{4}{x}=0\)
\(\Leftrightarrow\left(x+\frac{4}{x}\right)-\left(\sqrt{x}+\frac{2}{\sqrt{x}}\right)-2=0\)
Đặt \(\sqrt{x}+\frac{2}{\sqrt{x}}=t>0\Leftrightarrow t^2=x+4+\frac{4}{x}\Leftrightarrow x+\frac{4}{x}=t^2-4\), thay vào ta có:
\(\left(t^2-4\right)-t-2=0\Leftrightarrow t^2-t-6=0\Leftrightarrow\left(t-3\right)\left(t+2\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}t=3\\t=-2\end{cases}}\)
Đối chiếu ĐK của t
\(\Rightarrow t=3\Leftrightarrow\sqrt{x}+\frac{2}{\sqrt{x}}=3\Leftrightarrow x-3\sqrt{x}+2=0\Leftrightarrow\left(\sqrt{x}-2\right)\left(\sqrt{x}-1\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=1\\x=1\end{cases}}\)
b)\(\frac{1}{x+\sqrt{x^2+x}}+\frac{1}{x-\sqrt{x^2+x}}=x\)
\(\Leftrightarrow\frac{x-\sqrt{x^2+x}}{\left(x+\sqrt{x^2+x}\right)\left(x-\sqrt{x^2+x}\right)}+\frac{x+\sqrt{x^2+x}}{\left(x-\sqrt{x^2+x}\right)\left(x+\sqrt{x^2+x}\right)}-\frac{x\left(x+\sqrt{x^2+x}\right)\left(x-\sqrt{x^2+x}\right)}{\left(x+\sqrt{x^2+x}\right)\left(x-\sqrt{x^2+x}\right)}=0\)
\(\Leftrightarrow\frac{x-\sqrt{x^2+x}+x+\sqrt{x^2+x}-x^2}{\left(x+\sqrt{x^2+x}\right)\left(x-\sqrt{x^2+x}\right)}=0\)
\(\Leftrightarrow\frac{-x^2+2x}{\left(x+\sqrt{x^2+x}\right)\left(x-\sqrt{x^2+x}\right)}=0\)
\(\Leftrightarrow\frac{-x\left(x+2\right)}{\left(x+\sqrt{x^2+x}\right)\left(x-\sqrt{x^2+x}\right)}=0\)
Dễ thấy: x=0 ko là nghiệm nên \(x+2=0\Rightarrow x=-2\)
c)\(\sqrt{2x+4}-2\sqrt{2-x}=\frac{12x-8}{\sqrt{9x^2+16}}\)
\(\Leftrightarrow\frac{\left(2x+4\right)-4\left(2-x\right)}{\sqrt{2x+4}+2\sqrt{2-x}}=\frac{4\left(3x-2\right)}{\sqrt{9x^2+16}}\)
\(\Leftrightarrow\frac{2\left(3x-2\right)}{\sqrt{2x+4}+2\sqrt{2-x}}=\frac{4\left(3x-2\right)}{\sqrt{9x^2+16}}\)
\(\Leftrightarrow\frac{2\left(3x-2\right)}{\sqrt{2x+4}+2\sqrt{2-x}}-\frac{4\left(3x-2\right)}{\sqrt{9x^2+16}}=0\)
\(\Leftrightarrow\left(3x-2\right)\left(\frac{2}{\sqrt{2x+4}+2\sqrt{2-x}}-\frac{4}{\sqrt{9x^2+16}}\right)=0\)
\(\Leftrightarrow x=\frac{2}{3}\)
a, ĐKXĐ : Tự tìm hộ hen :)
Ta có : \(\sqrt{2x^2-9x+4}+3\sqrt{2x-1}=\sqrt{2x^2+21x-11}\)
=> \(\sqrt{2x^2-9x+4}+3\sqrt{2x-1}-\sqrt{2x^2+21x-11}=0\)
=> \(\sqrt{\left(x-4\right)\left(2x-1\right)}+3\sqrt{2x-1}-\sqrt{\left(2x-1\right)\left(x+11\right)}=0\)
=> \(\sqrt{2x-1}\left(\sqrt{x-4}+3-\sqrt{x+11}\right)=0\)
=> \(\left[{}\begin{matrix}\sqrt{2x-1}=0\\\sqrt{x-4}+3=\sqrt{x+11}\end{matrix}\right.\)
=> \(\left[{}\begin{matrix}2x-1=0\\x-4+6\sqrt{x-4}+9=x+11\end{matrix}\right.\)
=> \(\left[{}\begin{matrix}2x-1=0\\6\sqrt{x-4}=6\end{matrix}\right.\)
=> \(\left[{}\begin{matrix}2x-1=0\\x-4=1\end{matrix}\right.\)
=> \(\left[{}\begin{matrix}x=\frac{1}{2}\\x=5\end{matrix}\right.\) ( TM )
Vậy ...
b, ĐKXĐ : Tiếp tục tìm hộ nha :)
Ta có : \(\sqrt{1-x}+\sqrt{x^2-3x+2}+\left(x-2\right)\sqrt{\frac{x-1}{x-2}}=3\)
=> \(\sqrt{1-x}+\sqrt{\left(x-1\right)\left(x-2\right)}+\left(x-2\right)\sqrt{\frac{x-1}{x-2}}=3\)
=> \(\sqrt{1-x}+\sqrt{\left(1-x\right)\left(2-x\right)}+\left(x-2\right)\sqrt{\frac{1-x}{2-x}}=3\)
=> \(\sqrt{1-x}\left(1+\sqrt{2-x}+\frac{x-2}{\sqrt{2-x}}\right)=3\)
=> \(\sqrt{1-x}\left(1+\sqrt{2-x}+\frac{-\left(2-x\right)}{\sqrt{2-x}}\right)=3\)
=> \(\sqrt{1-x}\left(1+\sqrt{2-x}-\sqrt{2-x}\right)=3\)
=> \(\sqrt{1-x}=3\)
=> \(1-x=9\)
=> \(x=-8\left(TM\right)\)
Vậy ...