Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: =>1/2x-3/4x=-5/6+7/3
=>-1/4x=14/6-5/6=3/2
=>x=-3/2*4=-6
b: =>4/5x-3/2x=1/2+6/5
=>-7/10x=17/10
=>x=-17/7
c: =>6/5x+6/20=6/5-1/3x
=>6/5x+1/3x=6/5-3/10=12/10-3/10=9/10
=>x=27/46
d: =>6x+3/2+4/5=1/2-2x
=>8x=1/2-3/2-4/5=-1-4/5=-9/5
=>x=-9/40
4 câu đầu hìn như sai đề :v
`m)(3/2-2/(-5)):x-1/2=3/2`
`<=>(3/2+2/5):x=3/2+1/2=2`
`<=>19/10:x=2`
`<=>x=19/10:2=19/20`
`n)(3/2-5/11-3/13)(2x-2)=(-3/4+5/22+3/26)`
`<=>(3/2-5/11-3/13)(2x-2)+3/4-5/22-3/26=0`
`<=>(3/2-5/11-3/13)(2x-2)+1/2(3/2-5/11-3/13)=0`
`<=>(3/2-5/11-3/13)(2x-2+1/2)=0`
Mà `3/2-5/11-3/13>0`
`<=>2x-2+1/2=0`
`<=>2x-3/2=0`
`<=>2x=3/2<=>x=3/4`
a: =1/2x^3*x^2-1/2x^3*6x-1/2x^3*10
=1/2x^5-3x^4-5x^3
b: =-3x^2*5x^3+3x^2*4x^2-3x^2*3x+3x^2*3x
=-15x^5+12x^4-9x^3+9x^2
c: \(=3x\cdot5x^2-3x\cdot2x-3x=15x^3-6x^2-3x\)
d: \(=\dfrac{1}{2}x^2y\cdot2x^3-\dfrac{1}{2}x^2y\cdot\dfrac{2}{5}xy^2-\dfrac{1}{2}x^2y=x^5y-\dfrac{1}{5}x^3y^3-\dfrac{1}{2}x^2y\)
\(b,\Rightarrow\dfrac{x}{2}-\dfrac{3x}{5}-\dfrac{13}{5}=-\dfrac{7}{5}-\dfrac{7x}{10}\\ \Rightarrow\dfrac{1}{2}x-\dfrac{3}{5}x+\dfrac{7}{10}x=\dfrac{6}{5}\\ \Rightarrow\dfrac{3}{5}x=\dfrac{6}{5}\Rightarrow x=2\\ c,\Rightarrow\dfrac{2x-3}{3}-\dfrac{5-3x}{6}=-\dfrac{1}{3}+\dfrac{3}{2}=\dfrac{7}{6}\\ \Rightarrow\dfrac{4x-6-5+3x}{6}=\dfrac{7}{6}\\ \Rightarrow7x-11=7\Rightarrow x=\dfrac{18}{7}\\ d,\Rightarrow\dfrac{2}{3x}+\dfrac{7}{x}=\dfrac{4}{5}+2+\dfrac{3}{12}=\dfrac{61}{20}\\ \Rightarrow\dfrac{23}{3x}=\dfrac{61}{20}\\ \Rightarrow183x=460\\ \Rightarrow x=\dfrac{460}{183}\\ e,\Rightarrow2\left(x-1\right)-\left(x-1\right)^2=0\\ \Rightarrow\left(x-1\right)\left(2-x+1\right)=0\\ \Rightarrow\left[{}\begin{matrix}x=1\\x=3\end{matrix}\right.\)
e: Ta có: \(\left(x-1\right)^2=2\left(x-1\right)\)
\(\Leftrightarrow\left(x-1\right)\left(x-3\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=1\\x=3\end{matrix}\right.\)
a)
\(\dfrac{1}{2}{x^2}.\dfrac{6}{5}{x^3} = \dfrac{1}{2}.\dfrac{6}{5}.{x^2}.{x^3} = \dfrac{3}{5}{x^5}\);
b)
\(\begin{array}{l}{y^2}(\dfrac{5}{7}{y^3} - 2{y^2} + 0,25) = {y^2}.\dfrac{5}{7}{y^3} - {y^2}.2{y^2} + {y^2}.0,25)\\ = \dfrac{5}{7}{y^5} - 2{y^4} + 0,25{y^2}\end{array}\);
c)
\(\begin{array}{l}(2{x^2} + x + 4)({x^2} - x - 1) \\= 2{x^2}({x^2} - x - 1) + x({x^2} - x - 1) + 4({x^2} - x - 1)\\ = 2{x^4} - 2{x^3} - 2{x^2} + {x^3} - {x^2} - x + 4{x^2} - 4x - 4 \\= 2{x^4} - {x^3} + {x^2} - 5x - 4\end{array}\);
d)
\(\begin{array}{l}(3x - 4)(2x + 1) - (x - 2)(6x + 3) \\= 3x(2x + 1) - 4(2x + 1) - x(6x + 3) + 2(6x + 3)\\ = 6{x^2} + 3x - 8x - 4 - 6{x^2} - 3x + 12x + 6\\ = 4x + 2\end{array}\).
a: =>2(2x-3)-9=5-3x-2
=>4x-6-9=-3x+3
=>4x-15=-3x+3
=>7x=18
=>x=18/7
b: =>\(\dfrac{2}{3x}-\dfrac{3}{12}=\dfrac{4}{5}-\dfrac{21}{3x}+2\)
=>\(\dfrac{23}{3x}=\dfrac{4}{5}+2+\dfrac{1}{4}=\dfrac{61}{20}\)
=>3x=460/61
=>x=460/183
`h)x/2-1/x=1/12(x ne 0)`
`<=>6x^2-12=x`
`<=>6x^2-x-12=0`
`<=>6x^2-9x+8x-12=0`
`<=>3x(2x-3)+4(2x-3)=0`
`<=>(2x-3)(3x+4)=0`
`<=>` \(\left[ \begin{array}{l}x=\dfrac32\\x=-\dfrac43\end{array} \right.\)
`i)x^2-7/6x+1/3=0`
`<=>6x^2-7x+2=0`
`<=>6x^2-3x-4x+2=0`
`<=>3x(2x-1)-2(2x-1)=0`
`<=>(2x-1)(3x-2)=0`
`<=>` \(\left[ \begin{array}{l}x=\dfrac12\\x=\dfrac23\end{array} \right.\)
Câu cuối không có dấu "=" nên không tìm được x :v
- Hai câu h, i bấm nốt đáp án để đẹp nha ;-; câu k thiếu đề :v
\(a,3-x=x+1,8\)
\(\Rightarrow-x-x=1,8-3\)
\(\Rightarrow-2x=-1,2\)
\(\Rightarrow x=0,6\)
\(b,2x-5=7x+35\)
\(\Rightarrow2x-7x=35+5\)
\(\Rightarrow-5x=40\)
\(\Rightarrow x=-8\)
\(c,2\left(x+10\right)=3\left(x-6\right)\)
\(\Rightarrow2x+20=3x-18\)
\(\Rightarrow2x-3x=-18-20\)
\(\Rightarrow-x=-38\)
\(\Rightarrow x=38\)
\(d,8\left(x-\dfrac{3}{8}\right)+1=6\left(\dfrac{1}{6}+x\right)+x\)
\(\Rightarrow8x-3+1=1+6x+x\)
\(\Rightarrow8x-3=7x\)
\(\Rightarrow8x-7x=3\)
\(\Rightarrow x=3\)
\(e,\dfrac{2}{9}-3x=\dfrac{4}{3}-x\)
\(\Rightarrow-3x+x=\dfrac{4}{3}-\dfrac{2}{9}\)
\(\Rightarrow-2x=\dfrac{10}{9}\)
\(\Rightarrow x=-\dfrac{5}{9}\)
\(g,\dfrac{1}{2}x+\dfrac{5}{6}=\dfrac{3}{4}x-\dfrac{1}{2}\)
\(\Rightarrow\dfrac{1}{2}x-\dfrac{3}{4}x=-\dfrac{1}{2}-\dfrac{5}{6}\)
\(\Rightarrow-\dfrac{1}{4}x=-\dfrac{4}{3}\)
\(\Rightarrow x=\dfrac{16}{3}\)
\(h,x-4=\dfrac{5}{6}\left(6-\dfrac{6}{5}x\right)\)
\(\Rightarrow x-4=5-x\)
\(\Rightarrow x+x=5+4\)
\(\Rightarrow2x=9\)
\(\Rightarrow x=\dfrac{9}{2}\)
\(k,7x^2-11=6x^2-2\)
\(\Rightarrow7x^2-6x^2=-2+11\)
\(\Rightarrow x^2=9\Rightarrow\left[{}\begin{matrix}x=3\\x=-3\end{matrix}\right.\)
\(m,5\left(x+3\cdot2^3\right)=10^2\)
\(\Rightarrow5\left(x+24\right)=100\)
\(\Rightarrow x+24=20\)
\(\Rightarrow x=-4\)
\(n,\dfrac{4}{9}-\left(\dfrac{1}{6^2}\right)=\dfrac{2}{3}\left(x-\dfrac{2}{3}\right)^2+\dfrac{5}{12}\)
\(\Rightarrow\dfrac{2}{3}\left(x-\dfrac{2}{3}\right)^2+\dfrac{5}{12}=\dfrac{4}{9}-\dfrac{1}{36}\)
\(\Rightarrow\dfrac{2}{3}\left(x-\dfrac{2}{3}\right)^2+\dfrac{5}{12}=\dfrac{5}{12}\)
\(\Rightarrow\dfrac{2}{3}\left(x-\dfrac{2}{3}\right)^2=0\)
\(\Rightarrow x-\dfrac{2}{3}=0\Rightarrow x=\dfrac{2}{3}\)
#\(Urushi\text{☕}\)
a)Ta có: \(\dfrac{x}{2}-\left(\dfrac{3x}{5}-\dfrac{13}{5}\right)=-\left(\dfrac{7}{5}+\dfrac{7}{10}x\right)\)
\(\Leftrightarrow\dfrac{x}{2}-\dfrac{3x-13}{5}=\dfrac{-7}{5}-\dfrac{7x}{10}\)
\(\Leftrightarrow\dfrac{5x}{10}-\dfrac{2\left(3x-13\right)}{10}=\dfrac{-14}{10}-\dfrac{7x}{10}\)
\(\Leftrightarrow5x-6x+26=-14-7x\)
\(\Leftrightarrow-x+26+14+7x=0\)
\(\Leftrightarrow6x=-40\)
hay \(x=-\dfrac{20}{3}\)
d) Ta có: \(\dfrac{2x-3}{2}+\dfrac{-3}{2}=\dfrac{5-3x}{6}-\dfrac{1}{3}\)
\(\Leftrightarrow\dfrac{3\left(2x-3\right)}{6}+\dfrac{-9}{6}=\dfrac{5-3x}{6}-\dfrac{2}{6}\)
\(\Leftrightarrow6x-9-9=5-3x-2\)
\(\Leftrightarrow6x-18-3+3x=0\)
\(\Leftrightarrow x=\dfrac{7}{3}\)
`1, -(x-2) + (-3x - 5) = -5-(-3x+2)`
`=> -x + 2 - 3x - 5 = -5 + 3x - 2`
`=> -4x - 3 = 3x - 7`
`=> -4x - 3x = -7 + 3`
`=> -7x = -4`
`=> x = 4/7`
Vậy: `x = 4/7`
`2, -6(x + 3) - 5(-x + 1)= -2`
`=> -6x - 18 + 5x -5 = -2`
`=> -x - 23 = -2`
`=> -x = 21`
`=> x=-21`
Vậy: `x=-21`
`3, 2x - 1/3 :x = x - 2`
`=> 6x^2 - 1 = 3x^2 - 6x`
`=> 6x^2 - 3x^2 + 6x - 1 = 0`
`=> 3x^2 + 6x - 1 = 0`
$=> 3 \left(x + 1 - \frac{2\sqrt{3}}{3}\right) \left(x + 1 + \frac{2\sqrt{3}}{3}\right)=0$
Vậy: $x = -1 + \frac{2\sqrt{3}}{3}; x = -1 - \frac{2\sqrt{3}}{3}$