K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 4 2019

Xét \(x=0\)không thỏa mãn pt

Chia cả tử và mẫu của 2 phân số cho x ta được :

\(\frac{4}{4x-8+\frac{7}{x}}+\frac{3}{4x-10+\frac{7}{x}}=1\)

Đặt \(4x+\frac{7}{x}-9=a\)

\(pt\Leftrightarrow\frac{4}{a+1}+\frac{3}{a-1}=1\)

\(\Leftrightarrow\frac{4\left(a-1\right)+3\left(a+1\right)}{\left(a+1\right)\left(a-1\right)}=1\)

\(\Leftrightarrow4a-4+3a+3=\left(a-1\right)\left(a+1\right)\)

\(\Leftrightarrow7a-1=a^2-1\)

\(\Leftrightarrow a^2-1-7a+1=0\)

\(\Leftrightarrow a\left(a-7\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}a=0\\a=7\end{cases}}\)

Thay a vào tiếp tục giải pt là xong

10 tháng 11 2019

\(\frac{4x}{4x^2-8x+7}+\frac{3x}{4x^2-10x+7}=1\)

\(\Leftrightarrow\frac{4}{4x-8+\frac{7}{x}}+\frac{3}{4x-10+\frac{7}{x}}=1\)

Đặt \(4x+\frac{7}{x}=a\)

\(\Rightarrow\frac{4}{a-8}+\frac{3}{a-10}=1\)

\(\Leftrightarrow a^2-23a+144=0\)

\(\Rightarrow\left(a-16\right)\left(a-9\right)=0\)

\(\Rightarrow\orbr{\begin{cases}a=16\\a=9\end{cases}}\)

đến đây tự giải nha

16 tháng 10 2020

ĐK : x khác 7 ; 1 

\(\frac{4x}{x^2-8x+7}+\frac{3x}{4x^2-10x+7}=1\)

\(\Leftrightarrow\frac{4x}{\left(x-7\right)\left(x-1\right)}+\frac{3x}{4x^2-10x+7}=1\)

\(\Leftrightarrow\frac{4x\left(4x^2-10x+7\right)}{\left(x-7\right)\left(x-1\right)\left(4x^2-10x+7\right)}+\frac{3x\left(x-7\right)\left(x-1\right)}{\left(x-1\right)\left(x-7\right)\left(4x^2-10x+7\right)}=1\)

\(\Leftrightarrow16x^3-40x^2+28x+3x^3-24x^2+21x=1\)

\(\Leftrightarrow19x^3-64x^2+49x-1=0\) vô nghiệm 

Đề ko sai ak :)? từ cái chỗ 4x^2 - 10x + 7 ý 

22 tháng 2 2019

b) \(\frac{4x}{4x^2-8x+7}+\frac{5x}{4x^2-10x+7}=1\)

Giả sử x = 0 ta có :

\(0+0=1\)( vô lý )

=> \(x\ne0\)

Chia cả tử và mẫu của 2 phân thức cho x ta được :

\(\frac{4x:x}{\left(4x^2-8x+7\right):x}+\frac{5x:x}{\left(4x^2-10x+7\right):x}=1\)

\(\Leftrightarrow\frac{4}{4x-8+\frac{7}{x}}+\frac{5}{4x-10+\frac{7}{x}}=1\)

Đặt \(a=4x+\frac{7}{x}-9\)

\(\Leftrightarrow\frac{4}{a+1}+\frac{5}{a-1}=1\)

\(\Leftrightarrow\frac{4\left(a-1\right)+5\left(a+1\right)}{\left(a+1\right)\left(a-1\right)}=\frac{a^2-1}{a^2-1}\)

\(\Rightarrow9a+1=a^2-1\)

\(\Leftrightarrow a^2-9a-2=0\)

Tự giải tiếp 

22 tháng 2 2019

b) \(\frac{x^4+4}{x^2-2}=5x\)

\(\Leftrightarrow x^4+4=5x\left(x^2-2\right)\)

\(\Leftrightarrow x^4+4-5x^3+10x=0\)

\(\Leftrightarrow x^4-2x^3-3x^3+6x^2-6x^2+12x-2x+4=0\)

\(\Leftrightarrow x^3\left(x-2\right)-3x^2\left(x-2\right)-6x\left(x-2\right)-2\left(x-2\right)=0\)

\(\Leftrightarrow\left(x-2\right)\left(x^3-3x^2-6x-2\right)=0\)

\(\Leftrightarrow\left(x-2\right)\left(x^3+x^2-4x^2-4x-2x-2\right)=0\)

\(\Leftrightarrow\left(x-2\right)\left[x^2\left(x+1\right)-4x\left(x+1\right)-2\left(x+1\right)\right]=0\)

\(\Leftrightarrow\left(x-2\right)\left(x+1\right)\left(x^2-4x-2\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x=2\\x=-1\end{cases}}\)

\(x^2-4x-2=0\)

\(\Leftrightarrow x^2-4x+4-6=0\)

\(\Leftrightarrow\left(x-2\right)^2=\left(\pm\sqrt{6}\right)^2\)

\(\Leftrightarrow\orbr{\begin{cases}x=\sqrt{6}+2\\x=-\sqrt{6}+2\end{cases}}\)

Vậy....

3 tháng 7 2020

a) 4 ( x + 5 )( x + 6 )( x + 10 )( x + 12 ) = 3x2
Do x = 0 không là nghiệm pt nên chia 2 vế pt cho \(x^2\ne0\), ta được :

\(\frac{4}{x^2}\left(x^2+60+17x\right)\left(x^2+60+16x\right)=3\)

\(\Leftrightarrow4\left(x+\frac{60}{x}+17\right)\left(x+\frac{60}{x}+16\right)=3\)

Đến đây ta đặt  \(x+\frac{60}{x}+16=t\left(1\right)\)

Ta được :

\(4t\left(t+1\right)=3\Leftrightarrow4t^2+4t-3=0\Leftrightarrow\left(2t+3\right)\left(2t-1\right)=0\)

Từ đó ta lắp vào ( 1 ) tính được x 

NV
25 tháng 3 2023

ĐKXĐ: \(x\ne0\)

Phương trình tương đương:

\(\dfrac{4}{4x-8+\dfrac{7}{x}}+\dfrac{3}{4x-10+\dfrac{7}{x}}=1\)

Đặt \(4x-10+\dfrac{7}{x}=t\)

\(\Rightarrow\dfrac{4}{t+2}+\dfrac{3}{t}=1\)

\(\Rightarrow4t+3\left(t+2\right)=t\left(t+2\right)\)

\(\Leftrightarrow t^2-5t-6=0\Rightarrow\left[{}\begin{matrix}t=-1\\t=6\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}4x-10+\dfrac{7}{x}=-1\\4x-10+\dfrac{7}{x}=6\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}4x^2-9x+7=0\left(vn\right)\\4x^2-16x+7=0\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=\dfrac{7}{2}\\x=\dfrac{1}{2}\end{matrix}\right.\)

16 tháng 12 2022

a: \(\Leftrightarrow4\left(x^2+60+17x\right)\left(x^2+60+16x\right)=3x^2\)

\(\Leftrightarrow4\cdot\left[\left(x^2+60\right)^2+33x\left(x^2+60\right)+272x^2\right]=3x^2\)

=>4(x^2+60)^2+132x(x^2+60)+1085x^2=0

=>4(x^2+60)^2+62x(x^2+60)+70x(x^2+60)+1085x^2=0

=>2(x^2+60)(2x^2+120+31x)+35x(2x^2+120+31x)=0

=>(2x^2+120+35x)(2x^2+31x+120)=0

=>\(x\in\left\{\dfrac{-35\pm\sqrt{265}}{4};-\dfrac{15}{2};-8\right\}\)

b: Đặt x^2-3x=a

Phương trình sẽ là \(\dfrac{1}{a+3}+\dfrac{2}{a+4}=\dfrac{6}{a+5}\)

\(\Leftrightarrow\dfrac{a+4+2a+6}{\left(a+3\right)\left(a+4\right)}=\dfrac{6}{a+5}\)

=>(3a+10)(a+5)=6(a^2+7a+12)

=>6a^2+42a+72=3a^2+15a+10a+50

=>3a^2+17a+22=0

=>x=-2 hoặc x=-11/3

23 tháng 5 2016

X\(\Leftrightarrow-96x^2+505x+396=0\)ét vế trái : \(\frac{\left(4x+7\right)^2}{7}-\frac{\left(5x-1\right)^2}{7}=\frac{\left(4x+7-5x+1\right)\left(4x+7+5x-1\right)}{7}=\frac{\left(8-x\right)\left(9x+6\right)}{7}\)

pt <=> \(\frac{\left(8-x\right)\left(9x+6\right)}{7}=\frac{\left(8x-3\right)\left(3x+4\right)}{56}\)

\(\Leftrightarrow24\left(8-x\right)\left(3x+2\right)-\left(8x-3\right)\left(3x+4\right)=0\)

\(\Leftrightarrow-96x^2+505x+396=0\)

Giải phương trình trên được : \(x_1=\frac{505}{192}-\frac{\sqrt{407089}}{192}\)\(x_2=\frac{505}{192}+\frac{\sqrt{407089}}{192}\)

Vậy ..............................