K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 9 2017

Gọi S có n số hạng sao cho S = 1+ 2+ 3 + ...+ n = aaa ( a là chữ số)

=> (n + 1).n : 2 = a.111

=> n(n + 1) = a.222

=> n(n + 1) = a.2.3.37

a là chữ số mà n; n + 1 là hai số tự nhiên liên tiếp nên a = 6

=> n(n + 1) = 36.37

=> n = 36

Vậy cần 36 số hạng 

cho mình nha

1 tháng 9 2017

chả liên quan gì cả sao gửi vô đây vậy bạn

5 tháng 2 2020

Ai trả lời hộ em với

16 tháng 12 2020

ĐKXĐ: \(x\ge1\)

Ta có:

\(\sqrt{x+2\sqrt{x-1}}+\sqrt{x-2\sqrt{x-1}}=\dfrac{x+3}{2}\\ \Leftrightarrow\sqrt{\left(\sqrt{x-1}+1\right)^2}+\sqrt{\left(\sqrt{x-1}-1\right)^2}=\dfrac{x+3}{2}\\ \Leftrightarrow\sqrt{x-1}+1+\left|\sqrt{x-1}-1\right|=\dfrac{x+3}{2}\\ \Leftrightarrow\sqrt{x-1}+\left|\sqrt{x-1}-1\right|=\dfrac{x+1}{2}\left(1\right)\)

Ta xét 2 trường hợp sau:

TH1: \(x\ge2\)

Khi đó:

\(\left(1\right)\Leftrightarrow2\sqrt{x-1}-1=\dfrac{x+1}{2}\\ \Leftrightarrow2\sqrt{x-1}=\dfrac{x+3}{2}\\ \Leftrightarrow16\left(x-1\right)=x^2+6x+9\\ \Leftrightarrow x^2-10x+25=0\\ \Leftrightarrow\left(x-5\right)^2=0\\ \Leftrightarrow x=5\left(TMĐK\right)\)

TH2: \(1\le x< 2\)

Khi đó:

\(\left(1\right)\Leftrightarrow1=\dfrac{x+1}{2}\Leftrightarrow x=1\left(TMĐK\right)\)

Vậy x=1 hoặc x=5

27 tháng 9 2016

ĐKXĐ bạn tự tìm nhé nhưng phải có x khác 0 => \(\sqrt{x}\)khác 0

Nhân 2 vế của pt với \(\sqrt{x+\sqrt{x}}\)ta được

\(x+\sqrt{x}-\sqrt{\left(x+\sqrt{x}\right)\left(x-\sqrt{x}\right)}=\frac{3}{2}.\sqrt{x}\)

\(x-\frac{1}{2}\sqrt{x}-\sqrt{x\left(x-1\right)}=0\)(1)

Do \(\sqrt{x}\)khác 0 nên chia 2 vế của (1) cho \(\sqrt{x}\)được

\(\sqrt{x}-\frac{1}{2}-\sqrt{x-1}=0\)

chuyển 1/2 + sqrt(x-1) sang 1 vế rồi bình phương 2 vế dc

\(\left(\sqrt{x}\right)^2=\left(\sqrt{x-1}+\frac{1}{2}\right)^2\)

\(x=x-1+\frac{1}{4}+\sqrt{x-1}\)

\(\sqrt{x-1}=\frac{3}{4}\)

vậy \(x=\frac{25}{16}\)

ĐKXĐ: \(-1\le x\le1\)

Xét \(\sqrt{\left(1+x\right)^3}-\sqrt{\left(1-x\right)^3}=\left(\sqrt{1+x}-\sqrt{1-x}\right)\left[\left(1+x\right)+\left(1-x\right)+\sqrt{\left(1+x\right)\left(1-x\right)}\right]\)

\(=\left(\sqrt{1+x}-\sqrt{1-x}\right)\left(2+\sqrt{1-x^2}\right)\)

Khi đó phương trình đề trở thành:

\(\sqrt{1+\sqrt{1-x}}\left(\sqrt{1+x}-\sqrt{1-x}\right)\left(2+\sqrt{1-x^2}\right)=\frac{2+\sqrt{1-x^2}}{3}\)

Vì \(2+\sqrt{1-x^2}>0\)nên ta có thể chia 2 vế cho \(2+\sqrt{1-x^2}\):

\(\Rightarrow\sqrt{1+\sqrt{1-x^2}}\left(\sqrt{1+x}-\sqrt{1-x}\right)=\frac{1}{\sqrt{3}}\),Bình phương 2 vế:

\(\Rightarrow\left(1+\sqrt{1-x^2}\right)\left[\left(1+x\right)+\left(1-x\right)-2\sqrt{\left(1+x\right)\left(1-x\right)}\right]=\frac{1}{3}\)

\(\Leftrightarrow\left(1+\sqrt{1-x^2}\right)\left(2-2\sqrt{1-x^2}\right)=\frac{1}{3}\Leftrightarrow2\left(1+\sqrt{1-x^2}\right)\left(1-\sqrt{1-x^2}\right)=\frac{1}{3}\)\(\Leftrightarrow1-\left(1-x^2\right)=\frac{1}{3}\Leftrightarrow x^2=\frac{1}{6}\Leftrightarrow x=\pm\frac{1}{\sqrt{6}}\)

Ta xét phương trình đề: vế phải luôn không âm vì vậy vế trái phải không âm 

Khi đó \(\sqrt{\left(1+x\right)^3}-\sqrt{\left(1-x\right)^3}\ge0\Leftrightarrow1+x\ge1-x\Leftrightarrow x\ge0\)

Vậy ta chỉ nhận nghiệm duy nhất là \(x=\frac{1}{\sqrt{6}}\)