K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 8 2020

Phương trình \(5x+25=-3xy+8y^2\Leftrightarrow x=\frac{8y^2-25}{3y+5}\)

Bời vì x,y là số nguyên \(\Rightarrow8y^2-25⋮3y+5\)

\(\Rightarrow3\left(8y^2-25\right)⋮\left(3y+5\right)\Rightarrow\left(24y^2-75\right)⋮\left(3y+5\right)\left(1\right)\)

Mặt khác ta có \(8y\left(3y+5\right)⋮\left(3y+5\right)\Rightarrow\left(24y^2+40y\right)⋮\left(3y+5\right)\left(2\right)\)

Từ (1) và (2) \(\Rightarrow\left[\left(24y^2+40y\right)-\left(24y^2-75\right)\right]⋮\left(3y+5\right)\)

Do đó \(\left(40y+75\right)⋮\left(3y+5\right)\Rightarrow3\left(40y+75\right)⋮\left(3y+5\right)\)

\(\Rightarrow\left(120y+225\right)⋮\left(3y+5\right)\)mà \(40\left(3y+5\right)⋮\left(3y+5\right)\)

\(\Rightarrow\left(120y+200\right)⋮\left(3y+5\right)\Rightarrow\left(120y+225\right)-\left(120y+200\right)=25⋮\left(3y+5\right)\)

\(\Rightarrow3y+5\inƯ\left(25\right)=\left\{\pm1;\pm5;\pm25\right\}\)

\(\Rightarrow y\in\left\{-2;0;-10\right\}\)

Với y=-2 => x=-7 ta có cặp (-7;-2) thỏa mãn

Với y=0 => x=-5 ta có cặp (-5;0) thỏa mãn

Với y=-10 => x=-3 ta có cặp (-3;-10) thỏa mãn

Phương trình có các cặp nghiệm nguyên \(\left(x;y\right)=\left\{\left(-7;-2\right);\left(-5;0\right);\left(-3;-10\right)\right\}\)

20 tháng 8 2020
E7euueueru3

nghiệm nguyên dưng  của phương trình là các hoán vị của(1,2,3)

13 tháng 2 2020

0 1 2 3 4 5 6 7 8 9

7 tháng 11 2021

Đây mà lớp 1 á bạn???haha

7 tháng 11 2021

tạo câu hỏi nhầm khối lớp rồi bạn=))

12 tháng 5 2016

toán lớp 1 đây á

12 tháng 5 2016

Định lý cuối của Fermat (hay còn gọi là Định lý lớn Fermat) là một trong những định lý nổi tiếng trong lịch sử toán học. Định lý này phát biểu như sau:

Không tồn tại các nghiệm nguyên khác không x, y, và z thoả mãn xn + yn = zn trong đó n là một số nguyên lớn hơn 2.

Định lý này đã làm hao mòn không biết bao bộ óc vĩ đại của các nhà toán học lừng danh trong gần 4 thế kỉ. Cuối cùng nó được Andrew Wiles chứng minh vào năm 1993 sau gần 8 năm ròng nghiên cứu, phát triển từ chứng minh các giả thiết có liên quan. Tuy nhiên chứng minh này còn thiếu sót và đến năm 1995 Wiles mới hoàn tất, công bố chứng minh trọn vẹn.

22 tháng 9 2020

Đặt \(\sqrt{4x^2+5x-1}=a;2\sqrt{x^2-x-1}=b\left(a\ge0,b\ge0\right)\Rightarrow a^2-b^2=9x+3\)

Ta thụ được hệ phương trình: \(\hept{\begin{cases}a^2-b^2=9x+3\\a-b=9x+3\end{cases}\Rightarrow a^2-b^2=a-b\Leftrightarrow\left(a-b\right)\left(a+b-1\right)=0\Leftrightarrow\orbr{\begin{cases}a=b\\a+b=1\end{cases}}}\)

Xét 2 trường hợp xảy ra:

TH1: \(a=b\Leftrightarrow9x+3=0\Leftrightarrow x=\frac{-1}{3}\left(lo\text{ại}\right)\)

TH2: Kết hợp \(\hept{\begin{cases}a+b=1\\a-b=9x+3\end{cases}\Rightarrow2a=9x+4\Leftrightarrow\hept{\begin{cases}x\ge\frac{-4}{9}\\4\left(4x^2+5x-1\right)=81x^2+72x+16\end{cases}}}\)\(\Leftrightarrow\hept{\begin{cases}x\ge\frac{-4}{9}\\65x^2+52x+20=0\end{cases}}\)(*)

Hệ điều kiện (*) vô nghiệ do phương trình \(65x^2+52x+20=0\)vô nghiệm

Vậy hệ phương trình đã cho vô nghiệm.

22 tháng 9 2020

đk: \(\orbr{\begin{cases}x\ge\frac{1+\sqrt{5}}{2}\\x\le\frac{-5-\sqrt{41}}{8}\end{cases}}\)

Đặt \(\hept{\begin{cases}\sqrt{4x^2+5x-1}=a\\\sqrt{x^2-x-1}=b\end{cases}}\Leftrightarrow\hept{\begin{cases}4x^2+5x-1=a^2\\4\left(x^2-x-1\right)=4b^2\end{cases}}\)

\(\Rightarrow a^2-4b^2=9x+3\)

Mà \(a-2b=9x+3\)

=> \(a^2-4b^2=a-2b\)

<=> \(\left(a-2b\right)\left(a+2b\right)-\left(a-2b\right)=0\)

<=> \(\left(a-2b\right)\left(a+2b-1\right)=0\)

<=> \(\orbr{\begin{cases}a-2b=0\\a+2b-1=0\end{cases}}\)

Nếu: \(a-2b=0\)

\(\Leftrightarrow9x+3=0\)

\(\Leftrightarrow9x=-3\)

\(\Rightarrow x=-\frac{1}{3}\left(tm\right)\)

Nếu: \(a+2b-1=0\)

\(\Rightarrow a+2b=1\) , mà \(a-2b=9x+3\)

=> \(2a=9x+4\)

<=> \(2\sqrt{4x^2+5x-1}=9x+4\)

<=> \(4\left(4x^2+5x-1\right)=81x^2+72x+16\)

<=> \(65x^2+52x+20=0\)

<=> \(65\left(x^2+\frac{4}{5}x+\frac{4}{25}\right)+\frac{48}{5}=0\)

\(\Leftrightarrow65\left(x+\frac{2}{5}\right)^2=-\frac{48}{5}\) (vô lý)

Vậy \(x=-\frac{1}{3}\)

Theo quan điểm cá nhân là vậy._.

4 tháng 10 2019

<=> 3x+4 = 2y2+8x-13 <=> -5x+17 = 2y(1)

điều kiện 17-5x \(\ge0< =>x\le\)\(\frac{17}{5}\)

(1) <=> y2=(17-5x):2 <=> y = \(\pm\sqrt{\frac{17-5x}{2}}\)

23 tháng 5 2022

(B) hệ đã cho vô nghiệm vì một phương trình trong hệ đã vô nghiệm

24 tháng 5 2022

b nha

 

16 tháng 10 2020

30. \(\tan x+\cot x=2\sin\left(x+\frac{\pi}{4}\right)\)

ĐK: \(x\ne\frac{k\pi}{2}\)

pt <=> \(\frac{1}{\sin x.\cos x}=2\sin\left(x+\frac{\pi}{4}\right)\)

<=> \(\frac{1}{\sin2x}=\sin\left(x+\frac{\pi}{4}\right)\)

Đánh giá: \(-1\le\sin2x\le1\)

=> \(\orbr{\begin{cases}\frac{1}{\sin2x}\le-1\\\frac{1}{\sin2x}\ge1\end{cases}}\)

\(-1\le\sin\left(x+\frac{\pi}{4}\right)\le1\)

Như vậy dấu "=" xảy ra <=> \(\orbr{\begin{cases}\frac{1}{\sin2x}=\sin\left(x+\frac{\pi}{4}\right)=-1\\\frac{1}{\sin2x}=\sin\left(x+\frac{\pi}{4}\right)=1\end{cases}}\)

<=> \(\orbr{\begin{cases}\sin2x=\sin\left(x+\frac{\pi}{4}\right)=-1\\\sin2x=\sin\left(x+\frac{\pi}{4}\right)=1\end{cases}}\)

TH1: \(\sin2x=\sin\left(x+\frac{\pi}{4}\right)=-1\)

<=> \(\hept{\begin{cases}2x=-\frac{\pi}{2}+k2\pi\\x+\frac{\pi}{4}=-\frac{\pi}{2}+k2\pi\end{cases}}\Leftrightarrow\hept{\begin{cases}x=-\frac{\pi}{4}+k\pi\\x=-\frac{3\pi}{4}+k2\pi\end{cases}}\)loại

TH2: 

 \(\sin2x=\sin\left(x+\frac{\pi}{4}\right)=1\)

<=> \(\hept{\begin{cases}2x=\frac{\pi}{2}+k2\pi\\x+\frac{\pi}{4}=\frac{\pi}{2}+k2\pi\end{cases}}\Leftrightarrow\hept{\begin{cases}x=\frac{\pi}{4}+k\pi\\x=\frac{\pi}{4}+k2\pi\end{cases}}\Leftrightarrow x=\frac{\pi}{4}+k2\pi\)

Vậy ...

16 tháng 10 2020

29) \(\sin x-2\sin2x-\sin3x=2\sqrt{2}\)

<=> \(\left(\sin x-\sin3x\right)-2\sin2x=2\sqrt{2}\)

<=> \(-2.\sin x\cos2x-2\sin2x=2\sqrt{2}\)

<=> \(\sin x\cos2x+\sin2x=-\sqrt{2}\)

Ta có: \(\left(\sin x\cos2x+\sin2x\right)^2\le\left(\sin^2x+1\right)\left(\sin^22x+\cos^22x\right)=\sin^2x+1\le2\)

( theo bunhia)

=> \(-\sqrt{2}\le\sin x\cos2x+\sin2x\le\sqrt{2}\)

Dấu "=" xảy ra <=> \(\frac{\sin x}{1}=\frac{\cos2x}{\sin2x}\)(1) và \(\sin x\cos2x+\sin2x=-\sqrt{2}\)(2)

(1) <=> \(\frac{\sin x.\cos2x}{1}=\frac{\cos^22x}{\sin2x}\)=> (2) <=>  \(\frac{\cos^22x}{\sin2x}+\sin2x=-\sqrt{2}\)

<=> \(\frac{1}{\sin2x}=-\sqrt{2}\)<=> \(\sin2x=-\frac{\sqrt{2}}{2}\)<=> \(\orbr{\begin{cases}x=-\frac{\pi}{8}+k\pi\\x=-\frac{3\pi}{8}+k\pi\end{cases}}\)

(1) <=> \(\sin x.\sin2x=\cos2x\)=> (2) <=> \(\sin x.\sin x.\sin2x+\sin2x=-\sqrt{2}\)

<=> \(\frac{\sin^2x}{2}+\frac{1}{2}=+1\Leftrightarrow\sin^2x=1\)=> \(\cos^2x=0\)loại vì \(\sin2x=-\frac{\sqrt{2}}{2}\)

Vậy pt vô nghiệm

3 tháng 6 2021

Giúp mình nhanh nhé . Mình đang cần gấp

3 tháng 6 2021

bn ơi sao toán lớp 1 khó quá