Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
đề sai r,,,,,,cái kia phải là x^2-x+1 chứ
nếu đúng như tôi thì bạn chỉ cần cho cái 2 vào trong căn rồi nhân liên hợp là ok
\(\Leftrightarrow\dfrac{x+3+x-1+2\sqrt{\left(x+3\right)\left(x-1\right)}}{x+3-x+1}=\dfrac{13-x^2}{4}\)
\(\Leftrightarrow2x+2+2\sqrt{\left(x+3\right)\left(x-1\right)}=13-x^2\)
\(\Leftrightarrow\sqrt{4\left(x+3\right)\left(x-1\right)}=13-x^2-2x-2=-x^2-2x+11\)
=>\(x\simeq1,37\)
\(\sqrt[3]{x+3}-\sqrt[3]{6-x}=1\)
\(\Leftrightarrow\sqrt[3]{x+3}-2-\left(\sqrt[3]{6-x}-1\right)=0\)
\(\Leftrightarrow\dfrac{x+3-8}{\sqrt[3]{x+3}^2+4+2\sqrt[3]{x+3}}-\dfrac{6-x-1}{\sqrt[3]{6-x}^2+1+\sqrt[3]{6-x}}=0\)
\(\Leftrightarrow\dfrac{x-5}{\sqrt[3]{x+3}^2+4+2\sqrt[3]{x+3}}+\dfrac{x-5}{\sqrt[3]{6-x}^2+1+\sqrt[3]{6-x}}=0\)
\(\Leftrightarrow\left(x-5\right)\left(\dfrac{1}{\sqrt[3]{x+3}^2+4+2\sqrt[3]{x+3}}+\dfrac{1}{\sqrt[3]{6-x}^2+1+\sqrt[3]{6-x}}\right)=0\)
Dễ thấy: \(\dfrac{1}{\sqrt[3]{x+3}^2+4+2\sqrt[3]{x+3}}+\dfrac{1}{\sqrt[3]{6-x}^2+1+\sqrt[3]{6-x}}>0\)
\(\Rightarrow x-5=0\Leftrightarrow x=5\)
Đặt \(\left\{{}\begin{matrix}\sqrt[3]{x+3}=a\\\sqrt[3]{6-x}=b\end{matrix}\right.\)thì co hệ
\(\left\{{}\begin{matrix}a=1+b\left(1\right)\\a^3+b^3=9\left(2\right)\end{matrix}\right.\)
\(\Rightarrow\left(1+b\right)^3+b^3=9\)
\(\Leftrightarrow\left(b-1\right)\left(2b^2+5b+8\right)=0\)
Dễ thây \(2b^2+5b+8>0\)
\(\Rightarrow b=1\)
\(\Rightarrow\sqrt[3]{6-x}=1\)
\(\Leftrightarrow x=5\)
\(\sqrt[3]{x+3}-\sqrt[3]{6-x}=1\)
\(\Leftrightarrow\sqrt[3]{x+3}-2-\left(\sqrt[3]{6-x}-1\right)=0\)
\(\Leftrightarrow\frac{x+3-8}{\sqrt[3]{x+3}^2+4+2\sqrt[3]{x+3}}-\frac{6-x-1}{\sqrt[3]{6-x}^2+1+\sqrt[3]{6-x}}=0\)
\(\Leftrightarrow\left(x-5\right)\left(\frac{1}{\sqrt[3]{x+3}^2+4+2\sqrt[3]{x+3}}+\frac{1}{\sqrt[3]{6-x}^2+1+\sqrt[3]{6-x}}\right)=0\)
Dễ thấy :
\(\frac{1}{\sqrt[3]{x+3}^2+4+2\sqrt[3]{x+3}}+\frac{1}{\sqrt[3]{6-x}^2+1+\sqrt[3]{6-x}}>0\)
\(\Rightarrow x-5=0\Leftrightarrow x=5\)
Chúc bạn học tốt !!!
Áp dụng BĐT:\(\left|A\right|+\left|B\right|\ge\left|A+B\right|\)
Ta có: \(\left|\sqrt{x-1}+2\right|+\left|3-\sqrt{x-1}\right|\ge\left|\sqrt{x-1}+2+3-\sqrt{x-1}\right|=5\)
Dấu \(=\)xảy ra khi \(AB\ge0\)
dat \(\sqrt{x-1}\) = t
ta có: \(\sqrt{x+3+4t}\)+ \(\sqrt{x+8-6t}\)= 5
x + 3 + 4t + x + 8 - 6t = 25
2x - 2t = 14 ( chia cả 2 vế cho 2)
x - t = 7
t = x - 7
thay t = \(\sqrt{x}-1\)vào ta được:
x - 7 = \(\sqrt{x-1}\)
( x - 7 )2 = x - 1
x2 -14x + 49 = x - 1
x2 - 15x + 50 = 0
k biết đúng hay k
\(DK:x\ge0\)
\(\Leftrightarrow\frac{\sqrt{x}-\sqrt{x+1}}{x-x-1}+\frac{\sqrt{x+1}-\sqrt{x+2}}{x+1-x-2}+\frac{\sqrt{x+2}-\sqrt{x+3}}{x+2-x-3}=1\)
\(\Leftrightarrow-\sqrt{x}+\sqrt{x+1}-\sqrt{x+1}+\sqrt{x+2}-\sqrt{x+2}+\sqrt{x+3}=1\)
\(\Leftrightarrow\sqrt{x+3}-\sqrt{x}=1\)
\(\Leftrightarrow\sqrt{x+3}=1+\sqrt{x}\)
\(\Leftrightarrow x+3=x+2\sqrt{x}+1\)
\(\Leftrightarrow x=1\)
Vay nghiem cua PT la \(x=1\)
\(\Leftrightarrow\left(\sqrt[3]{x+1}+\sqrt[3]{x-1}\right)^3=\left(\sqrt[3]{5x}\right)^3\)
\(\Leftrightarrow x+1+x-1+3\sqrt[3]{x-1}.\sqrt[3]{x+1}\left(\sqrt[3]{x+1}+\sqrt[3]{x-1}\right)=5x\)
\(\Rightarrow3\sqrt[3]{x^2-1}.\sqrt[3]{5x}=3x\) (chưa chắc tồn tại x nên khi thay \(\sqrt[3]{x+1}+\sqrt[3]{x-1}=\sqrt[3]{5x}\) phải dùng dấu suy ra)
\(\Leftrightarrow\sqrt[3]{5x^3-5x}=x\Leftrightarrow5x^3-5x=x^3\Leftrightarrow4x^3-5x=0\)
\(\Leftrightarrow x\left(4x^2-5\right)=0\)
\(\Leftrightarrow x=0\text{ hoặc }x=\frac{\sqrt{5}}{2}\text{ hoặc }x=-\frac{\sqrt{5}}{2}\)
Thử lại thấy các số trên đều thỏa.
Vậy tập nghiệm của phương trình là \(S=\left\{0;\frac{\sqrt{5}}{2};-\frac{\sqrt{5}}{2}\right\}\)