Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(x^2-2\left(m+1\right)x+3m-3=0\left(1\right)\)
\(\Delta'>0\Leftrightarrow\left(m+1\right)^2-\left(3m-3\right)=m^2-m+4>0\left(đúng\forall m\right)\)
\(đk\) \(tồn\) \(tại:\sqrt{x1-1}+\sqrt{x2-1}\)
\(\Leftrightarrow1\le x1< x2\Leftrightarrow\left\{{}\begin{matrix}\left(x1-1\right)\left(x2-1\right)\ge0\\x1+x2-2>0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x1x2-\left(x1+x2\right)+1\ge0\\2\left(m+1\right)-2>0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}3m-2-2\left(m+1\right)+1\ge0\\m>0\end{matrix}\right.\)
\(\Leftrightarrow m\ge4\)
\(\Rightarrow\sqrt{x1-1}+\sqrt{x2-1}=4\Leftrightarrow x1+x2-2+2\sqrt{\left(x1-1\right)\left(x2-1\right)}=16\)
\(\Leftrightarrow2\left(m+1\right)+2\sqrt{x1.x2-\left(x1+x2\right)+1}=18\)
\(\Leftrightarrow\left(m+1\right)+\sqrt{3m-3-2\left(m+1\right)+1}=9\)
\(\Leftrightarrow m-4+\sqrt{m-4}=4\)
\(đặt:\sqrt{m-4}=t\ge0\Rightarrow t^2+t=4\Leftrightarrow\left[{}\begin{matrix}t=\dfrac{-1+\sqrt{17}}{21}\left(tm\right)\\t=\dfrac{-1-\sqrt{17}}{21}\left(ktm\right)\end{matrix}\right.\)
\(\Rightarrow\sqrt{m-4}=\dfrac{-1+\sqrt{17}}{21}\Leftrightarrow m=....\)
\(\)
Lời giải:
ĐKXĐ: $x\geq 5$
$2x^2-8x-6=2\sqrt{x-5}\leq (x-5)+1$ theo BĐT Cô-si
$\Leftrightarrow 2x^2-9x-2\leq 0$
$\Leftrightarrow 2x(x-5)+(x-2)\leq 0$
Điều này vô lý do $2x(x-5)\geq 0; x-2\geq 3>0$ với mọi $x\geq 5$
Vậy pt vô nghiệm nên không có đáp án nào đúng.
\(\Leftrightarrow-2\sqrt[3]{x}+5\sqrt{\sqrt{x}+1}-4=0\)
\(\Rightarrow x-2380\sqrt{37}-14477=0\)
\(\Rightarrow x+2380\sqrt{37}-14477=0\)
\(\Rightarrow x=2380\sqrt{37}+14477\)
thay 1 vào tử, thấy:
căn(5-x) = căn 4= 2;
căn bậc 3(x^2+7)=căn bậc 3 của 8=2
=> thêm bớt 2.
Bài làm:
lim {[căn(5-x)-2]-[căn bậc 3(x^2-7)-2]}/(x^2-1)
tương đương: lim [căn(5-x)-2]/(x^2-1) - lim [căn bậc 3(x^2-7)-2]/(x^2-1)
Tính lim từng số hạng như thường.
ĐKXĐ: \(x\ge3\)
\(pt\Leftrightarrow5\sqrt{x-3}+3\sqrt{x-3}-\sqrt{x-3}=7\)
\(\Leftrightarrow7\sqrt{x-3}=7\Leftrightarrow\sqrt{x-3}=1\)
\(\Leftrightarrow x-3=1\Leftrightarrow x=4\left(tm\right)\)
Đk: \(x\ge1\)
\(\Leftrightarrow4\left(2\sqrt{x-1}-1\right)+\left(4x-5\right)\left(x+2\right)=0\)
\(\Leftrightarrow\dfrac{4\left(4x-5\right)}{2\sqrt{x-1}+1}+\left(4x-5\right)\left(x+2\right)=0\)
\(\Leftrightarrow\left(4x-5\right)\left(\dfrac{4}{2\sqrt{x-1}+1}+x+2\right)=0\)
\(\Leftrightarrow x=\dfrac{5}{4}\)(Dễ thấy ngoặc to lớn hơn 0 với \(x\ge1\))
\(\sqrt{x-5}=3\) ⇔ x - 5 = 9 ⇔ x = 4