K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 1 2017

\(x^2-5x-3\sqrt{3x}+12=0\)

\(\Leftrightarrow\left(x^2-6x+9\right)+\left(x-2\sqrt{3x}+3\right)=0\)

\(\Leftrightarrow\left(x-3\right)^2+\left(\sqrt{x}-\sqrt{3}\right)^2=0\)

\(\Leftrightarrow\hept{\begin{cases}x-3=0\\\sqrt{x}-\sqrt{3}=0\end{cases}}\Leftrightarrow x=3\)

Vậy...

21 tháng 12 2018

\(\left(x^2-6x+9\right)+\left(x-2\sqrt{3x}+9\right)=0\) (dk:x>=0)

\(\left(x-3\right)^2+\left(\sqrt{x}-3\right)^2=0\)

=>\(\hept{\begin{cases}x-3=0\\\sqrt{x}-3=0\end{cases}}\)

=>x=3 tmdk

21 tháng 12 2018

sorry mk vt nham

NV
19 tháng 7 2021

ĐKXĐ: \(x\ge1\)

\(\sqrt{5x-1}=\sqrt{3x-2}+\sqrt{x-1}\)

\(\Leftrightarrow5x-1=3x-2+x-1+2\sqrt{\left(3x-2\right)\left(x-1\right)}\)

\(\Leftrightarrow x+2=2\sqrt{\left(3x-2\right)\left(x-1\right)}\)

\(\Leftrightarrow x^2+4x+4=4\left(3x-2\right)\left(x-1\right)\)

\(\Leftrightarrow11x^2-24x+4=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{2}{11}\left(loại\right)\\x=2\end{matrix}\right.\)

NV
1 tháng 7 2021

a.

\(\Leftrightarrow\left\{{}\begin{matrix}3x-2\ge0\\3x^2-17x+4=\left(3x-2\right)^2\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x\ge\dfrac{2}{3}\\3x^2-17x+4=9x^2-12x+4\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x\ge\dfrac{2}{3}\\6x^2+5x=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x\ge\dfrac{2}{3}\\\left[{}\begin{matrix}x=0< \dfrac{2}{3}\left(loại\right)\\x=-\dfrac{5}{6}< \dfrac{2}{3}\left(loại\right)\end{matrix}\right.\end{matrix}\right.\)

Vậy pt đã cho vô nghiệm

NV
1 tháng 7 2021

b.

ĐKXĐ: \(\left[{}\begin{matrix}x\ge4\\x\le1\end{matrix}\right.\)

Đặt \(\sqrt{x^2-5x+4}=t\ge0\Leftrightarrow x^2-5x=t^2-4\)

\(\Rightarrow2x^2-10x=2t^2-8\)

Phương trình trở thành:

\(2t^2-8-3t+6=0\)

\(\Leftrightarrow2t^2-3t-2=0\Rightarrow\left[{}\begin{matrix}t=2\\t=-\dfrac{1}{2}< 0\left(loại\right)\end{matrix}\right.\)

\(\Rightarrow\sqrt{x^2-5x+4}=2\)

\(\Leftrightarrow x^2-5x=0\)

\(\Rightarrow\left[{}\begin{matrix}x=0\\x=5\end{matrix}\right.\)

29 tháng 3 2022

1.   3x( x - 2 ) - ( x - 2 ) = 0

<=> ( x-2).(3x-1)  = 0 => x = 2 hoặc x = \(\dfrac{1}{3}\)

2.    x( x-1 ) ( x2 + x + 1 ) - 4( x - 1 )

<=> ( x - 1 ).( x (x^2 + x + 1 ) - 4 ) = 0

(phần này tui giải được x = 1 thôi còn bên kia giải ko ra nha )

\(\left\{{}\begin{matrix}\sqrt{5}x-2y=7\\\sqrt{5}x-5y=10\end{matrix}\right.\)<=> \(\left\{{}\begin{matrix}y=-1\\x=\sqrt{5}\end{matrix}\right.\)

29 tháng 3 2022

\(1. 3x^2 - 7x +2=0\)

=>\(Δ=(-7)^2 - 4.3.2\)

        \(= 49-24 = 25\)

Vì 25>0 suy ra phương trình có 2 nghiệm phân biệt:

\(x_1\)=\(\dfrac{-\left(-7\right)+\sqrt{25}}{2.3}=\dfrac{7+5}{6}=2\)

\(x_2\)=\(\dfrac{-\left(-7\right)-\sqrt{25}}{2.3}=\dfrac{7-5}{6}=\dfrac{1}{3}\)

 

  

2 tháng 1 2019

Gợi ý:

ĐK:  \(x\ge-5\)

pt  <=>  \(2\sqrt{2x^2+5x+12}+2\sqrt{2x^2+3x+2}=2x+10\)

<=> \(2x^2+5x+12+2\sqrt{2x^2+5x+12}+1-2x^2-3x-2+2\sqrt{2x^2+3x+2}-1=0\)

<=>  \(\left(\sqrt{2x^2+5x+12}+1\right)^2-\left(\sqrt{2x^2+3x+2}-1\right)^2=0\)

<=>  \(\left(\sqrt{2x^2+5x+12}+\sqrt{2x^2+3x+2}\right)\left(\sqrt{2x^2+5x+12}-\sqrt{2x^2+3x+2}+2\right)=0\)

đến đây bn giải từng trường hợp ra nhé

2 tháng 1 2019

Uầy , cách CTV Khánh làm đồ sộ vậy ? Bài này nhân liên hợp là ra mà . Và cái điều kiện x > -5 là điều kiện bình phương chớ ko phải ĐKXĐ đâu -.-

\(ĐKXĐ:x\in R\)

Vì VT > 0 nên VP > 0

            <=> x + 5 > 0

           <=> x > -5

Ta có: \(\sqrt{2x^2+5x+12}+\sqrt{2x^2+3x+2}=x+5\)

\(\Leftrightarrow\frac{\left(\sqrt{2x^2+5x+12}+\sqrt{2x^2+3x+2}\right)\left(\sqrt{2x^2+5x+12}-\sqrt{2x^2+3x+2}\right)}{\sqrt{2x^2+5x+12}-\sqrt{2x^2+3x+2}}=x+5\)

\(\Leftrightarrow\frac{2x^2+5x+12-2x^2-3x-2}{\sqrt{2x^2+5x+12}-\sqrt{2x^2+3x+2}}=x+5\)

\(\Leftrightarrow\frac{2x+10}{\sqrt{2x^2+5x+12}-\sqrt{2x^2+3x+2}}=x+5\)

\(\Leftrightarrow\frac{2\left(x+5\right)}{\sqrt{2x^2+5x+12}-\sqrt{2x^2+3x+2}}-\left(x+5\right)=0\)

\(\Leftrightarrow\left(x+5\right)\left(\frac{2}{\sqrt{2x^2+5x+12}-\sqrt{2x^2+3x+2}}-1\right)=0\)

                        |_____________________A______________________|

Vì \(A>0\forall x\ge5\)

Nên x + 5 = 0

<=> x = -5 (Tm ĐKXĐ)
 

10 tháng 9 2016

e mới vào lớp 6 chị ơi

10 tháng 9 2016

a/ PT <=> (x2 - 6x + 9) + (x - \(\sqrt{3x}\)) + (3 - \(\sqrt{3x}\)) = 0

<=> (\(\sqrt{x}-\sqrt{3}\))(\(\sqrt{3}x+x\sqrt{x}-3\sqrt{x}-3\sqrt{3}\)) + √x(\(\sqrt{x}-\sqrt{3}\)) + \(\sqrt{3}\left(\sqrt{3}-\sqrt{x}\right)\)= 0

<=> x = 3

NV
13 tháng 8 2021

Ta có:

\(\sqrt{3x^2+6x+12}+\sqrt{5x^4-10x^2+9}=\sqrt{3\left(x+1\right)^2+9}+\sqrt{5\left(x^2-1\right)^2+4}\ge\sqrt{9}+\sqrt{4}=5\)

\(3-4x-2x^2=5-2\left(x+1\right)^2\le5\)

Đẳng thức xảy ra khi và chỉ khi:

\(\left\{{}\begin{matrix}3\left(x+1\right)^2=0\\5\left(x^2-1\right)^2=0\\2\left(x+1\right)^2=0\end{matrix}\right.\) \(\Rightarrow x=-1\)

Vậy pt có nghiệm duy nhất \(x=-1\)