Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(x^2-\left(m-1\right)x-2=0\)
a=1; b=-m+1; c=-2
Vì a*c=-2<0
nên phương trình luôn có hai nghiệm phân biệt
Theo Vi-et, ta có:
\(\left\{{}\begin{matrix}x_1+x_2=\dfrac{-b}{a}=\dfrac{-\left[-\left(m-1\right)\right]}{1}=m-1\\x_1\cdot x_2=\dfrac{c}{a}=\dfrac{-2}{1}=-2\end{matrix}\right.\)
\(\left(x_1-x_2\right)^2=\left(x_1+x_2\right)^2-4x_1x_2\)
\(=\left(m-1\right)^2-4\cdot\left(-2\right)=\left(m-1\right)^2+8\)
=>\(x_1-x_2=\pm\sqrt{\left(m-1\right)^2+8}\)
\(\dfrac{x_1}{x_2}=\dfrac{x_2^2-3}{x_1^2-3}\)
=>\(x_1\left(x_1^2-3\right)=x_2\left(x_2^2-3\right)\)
=>\(x_1^3-x_2^3=3x_1-3x_2\)
=>\(\left(x_1-x_2\right)\left(x_1^2+x_2^2+x_1x_2-3\right)=0\)
=>\(\left(x_1-x_2\right)\left[\left(x_1+x_2\right)^2-x_1x_2-3\right]=0\)
=>\(\left[{}\begin{matrix}x_1-x_2=0\\\left(m-1\right)^2-\left(-2\right)-3=0\end{matrix}\right.\)
=>\(\left[{}\begin{matrix}\sqrt{\left(m-1\right)^2+8}=0\left(vôlý\right)\\\left(m-1\right)^2-1=0\end{matrix}\right.\)
=>\(\left(m-1\right)^2=1\)
=>\(\left[{}\begin{matrix}m-1=1\\m-1=-1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}m=2\\m=0\end{matrix}\right.\)
a ) x 2 - 3 = x 2 - ( √ 3 ) 2 = ( x - √ 3 ) ( x + √ 3 ) b ) x 2 - 6 = x 2 - ( √ 6 ) 2 = ( x - √ 6 ) ( x + √ 6 ) c ) x 2 + 2 √ 3 x + 3 = x 2 + 2 √ 3 x + ( √ 3 ) 2 = ( x + √ 3 ) 2 d ) x 2 - 2 √ 5 x + 5 = x 2 - 2 √ 5 x + ( √ 5 ) 2 = ( x - √ 5 ) 2
a: \(\Leftrightarrow\left(2m+4\right)^2-4m\cdot9=0\)
\(\Leftrightarrow4m^2+16m+16-36m=0\)
\(\Leftrightarrow m^2-5m+4=0\)
\(\Leftrightarrow\left(m-1\right)\left(m-4\right)=0\)
hay \(m\in\left\{1;4\right\}\)
b: \(\Leftrightarrow\left(2m-8\right)^2-4\left(m^2+m+3\right)=0\)
\(\Leftrightarrow4m^2-32m+64-4m^2-4m-12=0\)
=>-36m+52=0
=>-36m=-52
hay m=13/9
d: \(\Leftrightarrow m^2-4m\left(m+3\right)=0\)
\(\Leftrightarrow m\left(m-4m-12\right)=0\)
=>m(-3m-12)=0
=>m=0 hoặc m=-4
a) PT có nghiệm kép khi △=0
\(\Leftrightarrow\left[2\left(m+2\right)\right]^2-4.m.9=0\)
\(\Leftrightarrow4\left(m^2+4m+4\right)-36m=0\)
\(\Leftrightarrow4m^2-20m+16=0\Leftrightarrow\left[{}\begin{matrix}m=4\\m=1\end{matrix}\right.\)
Khi đó nghiệm kép của pt là \(x_1=x_2=\dfrac{-2\left(m+2\right)}{2.m}=\dfrac{-2m-4}{2m}=-1-\dfrac{2}{m}\)
+Khi m=4 thì \(x_1=x_2=-1-\dfrac{2}{4}=-\dfrac{3}{2}\)
+Khi m=1 thì \(x_1=x_2=-1-\dfrac{2}{1}=-3\)
a=1
b=-2(m+1)
c=m2+2m
△'=(m+1)2-(m2+2m)1=m2+2m+1-m2-2m=1>0 ∀ m
=> pt luôn có 2n0 phân biệt ∀m
\(x^2\left(x-2\right)+3\left(x-2\right)=0\)
=>\(\left(x-2\right)\left(x^2+3\right)=0\)
mà \(x^2+3>=3>0\forall x\)
nên x-2=0
=>x=2