Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\Leftrightarrow x^4\left(x-1\right)-4x^3\left(x-1\right)+4x\left(x-1\right)-\left(x-1\right)=0\)
\(\Leftrightarrow\left(x^4-4x^3+4x-1\right)\left(x-1\right)=0\)
\(\Leftrightarrow\left[x^3\left(x-1\right)-3x^2\left(x-1\right)-3x\left(x-1\right)+\left(x-1\right)\right]\left(x-1\right)=0\)
\(\Leftrightarrow\left(x-1\right)^2\left(x^3-3x^2-3x+1\right)=0\)
\(\Leftrightarrow\left(x-1\right)^2\left[\left(x+1\right)\left(x^2-x+1\right)-3x\left(x+1\right)\right]=0\)
\(\Leftrightarrow\left(x-1\right)^2\left(x+1\right)\left(x^2-4x+1\right)=0\)
- Khi x - 1 = 0 thì x = 1
- Khi x + 1 = 0 thì x = -1
- Khi \(x^2-4x+1=0\Leftrightarrow\left(x-2\right)^2=3\Leftrightarrow\orbr{\begin{cases}x=\sqrt{3}+2\\x=-\sqrt{3}+2\end{cases}}\)
Pt có tậo nghiệm là: \(S=\left\{1;-1;\sqrt{3}+2;-\sqrt{3}+2\right\}\)
\(5x^2+4x+2x^3+x^4-12=0\)
\(\Leftrightarrow x^4+2x^3+5x^2+4x-12=0\)
\(\Leftrightarrow x^4-x^3+3x^3-3x^2+8x^2-8x+12x-12=0\)
\(\Leftrightarrow x^3\left(x-1\right)+3x^2\left(x-1\right)+8x\left(x-1\right)+12\left(x-1\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(x^3+3x^2+8x+12\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left[x^3+2x^2+x^2+2x+6x+12\right]=0\)
\(\Leftrightarrow\left(x-1\right)\left[x^2\left(x+2\right)+x\left(x+2\right)+6\left(x+2\right)\right]=0\)
\(\Leftrightarrow\left(x-1\right)\left(x+2\right)\left(x^2+x+6\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(x+2\right)\left[x^2+2\times\dfrac{1}{2}x+\left(\dfrac{1}{2}\right)^2-\left(\dfrac{1}{2}\right)^2+6\right]=0\)
\(\Leftrightarrow\left(x-1\right)\left(x+2\right)\left[\left(x+\dfrac{1}{2}\right)^2+\dfrac{23}{4}\right]\)
\(\Rightarrow\left[{}\begin{matrix}x-1=0\\x+2=0\\\left(x^2+\dfrac{1}{2}\right)^2+\dfrac{23}{4}=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=1\\x=-2\end{matrix}\right.\)
Vì \(\left(x^2+\dfrac{1}{2}\right)^2\ge0\forall x\Rightarrow\left(x^2+\dfrac{1}{2}\right)^2+\dfrac{23}{4}\ge\dfrac{23}{4}\forall x\)
\(\Rightarrow\left(x^2+\dfrac{1}{2}\right)^2+\dfrac{23}{4}\) vô nghiệm
Vậy phương trình có tập nghiệm là\(S=\left\{1;-2\right\}\)
\(x^2+2>0\Rightarrow4x+6=0\Leftrightarrow x=-\frac{3}{2}\)
\((4x+6)(x^{2}+2)=0 \)
\(\iff 4x+6=0 \) hoặc \(x^{2}+2=0\)
\(\iff 4x=6\) hoặc \(x^{2}\) =-2 (loại, vì \(x^{2}>0\) )
\(\iff\) x=\(\dfrac{3}{2}\)
a)thay k=0, ta có
\(4x^2-25+0^2+4.0.x=0\)
\(\Leftrightarrow4x^2-25+0+0=0\)
\(\Leftrightarrow4x^2-25=0\)
\(\Leftrightarrow\left(2x-5\right)\left(2x+5\right)=0\)
\(\Leftrightarrow\hept{\begin{cases}2x-5=0\\2x+5=0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x=\frac{5}{2}\\x=-\frac{5}{2}\end{cases}}\)
Vậy tập nghiệm của PT là \(S=\left\{\frac{5}{2};-\frac{5}{2}\right\}\)
b) Thay k=-3, ta có:
\(4x^2-25+\left(-3\right)^2+4\left(-3\right)x=0\)
\(\Leftrightarrow4x^2-25+9-12x=0\)
\(\Leftrightarrow4x^2-16-12x=0\)
\(\Leftrightarrow4x^2-16+4x-16x=0\)
\(\Leftrightarrow\left(4x^2+4x\right)-\left(16x+16\right)=0\)
\(\Leftrightarrow4x\left(x+1\right)-16\left(x+1\right)=0\)
\(\Leftrightarrow\left(x+1\right)\left(4x-16\right)=0\)
\(\Leftrightarrow\hept{\begin{cases}x+1=0\\4x-16=0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x=-1\\x=4\end{cases}}\)
Vậy tập nghiệm của PT là \(S=\left\{-1;4\right\}\)
c) Thay x=-2, ta có:
\(4\left(-2\right)^2-25+k^2+4\left(-2\right)k=0\)
\(\Leftrightarrow16-25+k^2-8k=0\)
\(\Leftrightarrow-9+k^2-8k=0\)
\(\Leftrightarrow-9+k^2+k-9k=0\)
\(\Leftrightarrow\left(k^2+k\right)-\left(9k+9\right)=0\)
\(\Leftrightarrow k\left(k+1\right)-9\left(k+1\right)=0\)
\(\Leftrightarrow\left(k+1\right)\left(k-9\right)=0\)
\(\Leftrightarrow\hept{\begin{cases}k+1=0\\k-9=0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}k=-1\\k=9\end{cases}}\)
Vậy tập nghiệm của PT là \(S=\left\{-1;9\right\}\)
Lời giải:
\((x^3-x^2)-4x^2+8x-4=0\)
\(\Leftrightarrow x^2(x-1)-4(x^2-2x+1)=0\)
\(\Leftrightarrow x^2(x-1)-4(x-1)^2=0\)
\(\Leftrightarrow (x-1)[x^2-4(x-1)]=0\)
\(\Leftrightarrow (x-1)(x^2-4x+4)=0\)
\(\Leftrightarrow (x-1)(x-2)^2=0\)
\(\Rightarrow \left[\begin{matrix} x=1\\ x=2\end{matrix}\right.\)
a) Ta có: \(\left(x+1\right)^4+\left(x-3\right)^4=0\)
Nhận thấy: \(\hept{\begin{cases}\left(x+1\right)^4\ge0\left(\forall x\right)\\\left(x-3\right)^4\ge0\left(\forall x\right)\end{cases}\Rightarrow}\left(x+1\right)^4+\left(x-3\right)^4\ge0\left(\forall x\right)\)
Dấu "=" xảy ra khi: \(\hept{\begin{cases}\left(x+1\right)^4=0\\\left(x-3\right)^4=0\end{cases}}\Rightarrow\hept{\begin{cases}x=-1\\x=3\end{cases}}\) (mâu thuẫn)
=> pt vô nghiệm
b) \(x^4+2x^3-4x^2-5x-6=0\)
\(\Leftrightarrow\left(x^4-2x^3\right)+\left(4x^3-8x^2\right)+\left(4x^2-8x\right)+\left(3x-6\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left(x^3+4x^2+4x+3\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left[\left(x^3+3x^2\right)+\left(x^2+3x\right)+\left(x+3\right)\right]=0\)
\(\Leftrightarrow\left(x-2\right)\left(x+3\right)\left(x^2+x+1\right)=0\)
Mà \(x^2+x+1=\left(x+\frac{1}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}>0\left(\forall x\right)\)
=> \(\orbr{\begin{cases}x-2=0\\x+3=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=2\\x=-3\end{cases}}\)
a: \(\dfrac{2x^3-5x^2-x+1}{2x+1}\)
\(=\dfrac{2x^3+x^2-6x^2-3x+2x+1}{2x+1}\)
\(=x^2-3x+1\)
b: \(\dfrac{x^3-2x+4}{x+2}\)
\(=\dfrac{x^3+2x^2-2x^2-4x+2x+4}{x+2}\)
\(=x^2-2x+2\)
c) Ta có: \(\dfrac{5x^4+9x^3-2x^2-4x-8}{x-1}\)
\(=\dfrac{5x^4-5x^3+14x^3-14x^2+12x^2-12x+8x-8}{x-1}\)
\(=\dfrac{5x^3\left(x-1\right)+14x^2\left(x-1\right)+12x\left(x-1\right)+8\left(x-1\right)}{x-1}\)
\(=5x^3+14x^2+12x+8\)
d) Ta có: \(\dfrac{5x^3+14x^2+12x+8}{x+2}\)
\(=\dfrac{5x^3+10x^2+4x^2+8x+4x+8}{x+2}\)
\(=\dfrac{5x^2\left(x+2\right)+4x\left(x+2\right)+4\left(x+2\right)}{x+2}\)
\(=5x^2+4x+4\)
Hình như đề của bạn sai nên mình sửa lại nhé
x4 + 2x3 +5x2 +4x-12=0
⇔x4-x3+3x3-3x2+8x2-8x+12x-12=0
⇔x3(x-1)+3x2(x-1)+8x(x-1)+12(x-1)=0
⇔(x-1)(x3+3x2+8x+12)=0
⇔(x-1)(x+2)(x2+x+6)=0
ta có x2+x+6 >0 ∀x
⇔\(\left[{}\begin{matrix}x-1=0\\x+2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\x=-2\end{matrix}\right.\)
Vậy...
Đề sai không bạn