Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
x^4-5x^3+5x^3-25x^2-5x^2+25x+6x-30=0
(x-5)(x^3+5x^2-5x+6)=0
(x-5)(x^3+6x^2-x^2-6x+x+6)=0
(x-5)(x+6)(x^2-x+1)=0
Suy ra x-5=0 hay x+6=0 hay x^2-x+1=0
Suy ra x=5 hay x=-6 hay x^2+2x.1/2+1/4+3/4=0
Suy ra x=5 hay x=-6 hay (x+1/2)^2=3/4=0 (vô lý)
Vậy x=5 hay x=-6
pt <=> (x^4+x)-(30x^2-30x+30) = 0
<=> x.(x^3+1)-30.(x^2-x+1) = 0
<=> x.(x+1).(x^2-x+1)-30.(x^2-x+1) = 0
<=> (x^2-x+1).(x^2+x-30) = 0
<=> x^2+x-30 = 0 ( vì x^2-x+1 > 0 )
<=> (x^2-5x)+(6x-30) = 0
<=> (x-5).(x+6) = 0
<=> x-5=0 hoặc x+6=0
<=> x=5 hoặc x=-6
Vậy ..............
Tk mk nha
x4-30x2+31x-30=0
<=>x4+x-30x2+30x-30=0
<=>x(x3+1)-30(x2-x+1)=0
<=>x(x+1)(x2-x+1)-30(x2-x+1)=0
<=>(x2-x+1)(x2+x-30)=0
<=>(x2-x+1)(x2-5x+6x-30)=0
<=>(x2-x+1)[x(x-5)+6(x-5)]=0
<=>(x2-x+1)(x-5)(x+6)=0
Vì x2-x+1=x2-2x.1/2+1/4+3/4=(x-1/2)2+3/4>0 với mọi x
Do đó: <=>x-5 =0 <=> x=5
x+6=0 x=-6
Vậy phương trình có tập nghiệm là S={5;-6}
x^4-30x^2+31x-30=0
<=>x^4+x^2+1-31(x^2-x+1)=0
<=>(x^2-x+1)(x^2+x+1)-31(x^2-x+1)=0
<=>(x^2-x+1)(x^2+x-30)=0
<=>(x^2-x+1)(x^2-6x+5x-30)=0
<=>(x^2-x+1)(x-6)(x+5)=0
Ta có:x^2-x+1=x^2-x+1/4+3/4=(x-1/2)^2+3/4>0 Với mọi x
<=>(x-6)(x+5)=0
<=>x+5=0<=>x=-5
x-6=0<=>x=6
Vậy x=(5;-6)
= x^4+x^2+1-31x^2+31x-31
= (x^2+x+1)(x^2-x+1)-31(x^2-x+1)
= (x^2-x+1)(x^2+x+1-31)
= (x^2-x-1)(x^2+x-30)
= (x^2-x+1)(x^2+6x-5x-30)
= (x^2-x+1)(x-5)(x+6)
x^4-30x^2+31x-30=0
<=>(x^4 - 29x^2 + 841/4) - (x^2 - 31x + 31^2/4 ) =0
<=> (x^2- 29/2)^2 - (x-31/2)^2=0
(đến đây ta giải phương trình A^2-B^2=0 bằng cách đưa về pt tích (A-B)(A+B)=0 )
tick nha
Câu hỏi của trần thị anh thư - Toán lớp 8 - Học toán với OnlineMath
x4-30x2+31x-30=0
<=>x4+x-30x2+30x-30=0
<=>x(x3+1)-30(x2-x+1)=0
<=>x(x+1)(x2-x+1)-30(x2-x+1)=0
<=>(x2-x+1)(x2+x-30)=0
<=>(x2-x+1)(x2-5x+6x-30)=0
<=>(x2-x+1)[x(x-5)+6(x-5)]=0
<=>(x2-x+1)(x-5)(x+6)=0
Vì x2-x+1=x2-2x.1/2+1/4+3/4=(x-1/2)2+3/4>0 với mọi x
Do đó: <=>x-5 =0 <=> x=5
x+6=0 x=-6
Vậy phương trình có tập nghiệm là S={5;-6}
P/S: kham khảo
\(x^4-30x^2+31x-30\)
\(=x^4+x-30x^2+30x-30\)
\(=x\left(x^3+1\right)-30\left(x^2-x+1\right)\)
\(=x\left(x+1\right)\left(x^2-x+1\right)-30\left(x^2-x+1\right)\)
\(=\left(x^2+x\right)\left(x^2-x+1\right)-30\left(x^2-x+1\right)\)
\(=\left(x^2-x+1\right)\left(x^2+x-30\right)\)
\(x^4-30x^2+31x-30\)
\(=x^4-5x^3+5x^3-25x^2-5x^2+25x+6x-30\)
\(=x^3\left(x-5\right)+5x^2\left(x-5\right)-5x\left(x-5\right)+6\left(x-5\right)\)
\(=\left(x-5\right)\left(x^3+5x^2-5x+6\right)\)
\(=\left(x-5\right)\left(x^3+6x^2-x^2-6x+x+6\right)\)
\(=\left(x-5\right)\left[x^2\left(x+6\right)-x\left(x+6\right)+\left(x+6\right)\right]\)
\(=\left(x-5\right)\left(x+6\right)\left(x^2-x+1\right)\)
\(x^4-30x^2+31x-30=0\)
\(\Leftrightarrow x^4+x-30\left(x^2-x+1\right)=0\)
\(\Leftrightarrow x\left(x^3+1\right)-30\left(x^2-x+1\right)=0\)
\(\Leftrightarrow x\left(x+1\right)\left(x^2-x+1\right)-30\left(x^2-x+1\right)=0\)
\(\Leftrightarrow\left(x^2-x+1\right)\left(x^2+x-30\right)=0\)
\(\Leftrightarrow\left(x+6\right)\left(x-5\right)\left(x^2-x+1\right)=0\)
\(\Leftrightarrow\left[\begin{array}{nghiempt}x+6=0\\x-5=0\\x^2-x+1=0\end{array}\right.\)\(\Leftrightarrow\left[\begin{array}{nghiempt}x=-6\\x=5\\\left(x-\frac{1}{2}\right)^2+\frac{3}{4}>0\left(loai\right)\end{array}\right.\)
Vậy \(S=\left\{-6;5\right\}\)
<=>x4+x-30x2+30x-30=0
<=>x(x3+1)-30(x2-x+1)=30
<=>x(x+1)(x2-x+1)-30(x2-x+1)=30
<=>(x2-x+1)(x2+x-30)=0
<=>x2+x-30=0 (do x2-x+1 >0)
<=>(x2-5x)+(6x-30)=0
<=>x(x-5)+6(x-5)=0
<=>(x-5)(x+6)=0
<=> \(\orbr{\begin{cases}x-5=0\\x+6=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=5\\x=-6\end{cases}}}\)
Vậy ..
bạn ơi mấy cái bài này bạn lên coccoc math ban ghi là nó ra kết quả phân tích thành nhân tử
rồi bạn nhân ngược lại là nó ra cách làm .
\(x^4-30x^2+31x-30=0.\)
\(\left(x-5\right)\left(x-6\right)\left(x^2-x-1\right)=0\) ( coccoc math)
\(\left(x^2-x-1\right)=0\)
\(x^2-2x.\frac{1}{2}+\frac{1}{2}-\left(1+\frac{1}{2}\right)=0\)
\(\left(x^2-\frac{1}{2}\right)^2-\frac{3}{2}=0\)
\(\left(x-\frac{1}{2}+\sqrt{\frac{3}{2}}\right)\left(x-\frac{1}{2}-\sqrt{\frac{3}{2}}\right)=0\)
tích = 0 2 th
vậy ....
\(x^4-30x^2+31x-30=0\)
<=>\(x^4-30x^2+30x+x-30=0\)
<=>\(\left(x^4+x\right)-\left(30x^2-30x+30\right)=0\)
<=>\(x\left(x^3+1\right)-30\left(x^2-x+1\right)=0\)
<=>\(x\left(x+1\right)\left(x^2-x+1\right)-30\left(x^2-x+1\right)=0\)
<=>\(\left(x^2-x+1\right)\left(x^2+x-30\right)=0\)
<=>\(\left(x^2-x+1\right)\left[\left(x^2+6x\right)-5\left(x+30\right)\right]=0\)
<=>\(x^2\left(-x+1\right)\left[x\left(x+6\right)-5\left(x+6\right)\right]=0\)
<=>\(\left(x^2-x+1\right)\left(x+6\right)\left(x-5\right)=0\)
=>\(x+6=0hoặcx-5=0\) vì\(\left[x^2-x+1=\left(x-\dfrac{1}{2}\right)^2+\dfrac{3}{4}>0\right]\)
<=> x=-6 hoặc x=5
Vậy......