Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: ĐKXĐ: x>=5
\(\sqrt{4x-20}+\sqrt{x-5}-\dfrac{1}{3}\cdot\sqrt{9x-45}=4\)
=>\(2\sqrt{x-5}+\sqrt{x-5}-\dfrac{1}{3}\cdot3\sqrt{x-5}=4\)
=>\(2\sqrt{x-5}=4\)
=>\(\sqrt{x-5}=2\)
=>x-5=4
=>x=9(nhận)
b: ĐKXĐ: x>=1/2
\(\sqrt{2x-1}-\sqrt{8x-4}+5=0\)
=>\(\sqrt{2x-1}-2\sqrt{2x-1}+5=0\)
=>\(5-\sqrt{2x-1}=0\)
=>\(\sqrt{2x-1}=5\)
=>2x-1=25
=>2x=26
=>x=13(nhận)
c: \(\sqrt{x^2-10x+25}=2\)
=>\(\sqrt{\left(x-5\right)^2}=2\)
=>\(\left|x-5\right|=2\)
=>\(\left[{}\begin{matrix}x-5=2\\x-5=-2\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=7\\x=3\end{matrix}\right.\)
d: \(\sqrt{x^2-14x+49}-5=0\)
=>\(\sqrt{x^2-2\cdot x\cdot7+7^2}=5\)
=>\(\sqrt{\left(x-7\right)^2}=5\)
=>|x-7|=5
=>\(\left[{}\begin{matrix}x-7=5\\x-7=-5\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=12\\x=2\end{matrix}\right.\)
\(a,\sqrt{4x-20}+\sqrt{x-5}-\dfrac{1}{3}\sqrt{9x-45}=4\left(đkxđ:x\ge5\right)\\ \Leftrightarrow\sqrt{4\left(x-5\right)}+\sqrt{x-5}-\dfrac{1}{3}\sqrt{9\left(x-5\right)}=4\\ \Leftrightarrow2\sqrt{x-5}+\sqrt{x-5}-\sqrt{x-5}=4\\ \Leftrightarrow2\sqrt{x-5}=4\\ \Leftrightarrow\sqrt{x-5}=2\\ \Leftrightarrow x-5=4\\ \Leftrightarrow x=9\left(tm\right)\)
\(b,\sqrt{2x-1}-\sqrt{8x-4}+5=0\left(đkxđ:x\ge\dfrac{1}{2}\right)\\ \Leftrightarrow\sqrt{2x-1}-\sqrt{4\left(2x-1\right)}=-5\\ \Leftrightarrow\sqrt{2x-1}-2\sqrt{2x-1}=-5\\ \Leftrightarrow-\sqrt{2x-1}=-5\\ \Leftrightarrow\sqrt{2x-1}=5\\ \Leftrightarrow2x-1=25\\ \Leftrightarrow2x=26\\ \Leftrightarrow x=13\left(tm\right)\)
\(c,\sqrt{x^2-10x+25}=2\\ \Leftrightarrow\sqrt{\left(x-5\right)^2}=2\\ \Leftrightarrow\left|x-5\right|=2\\ \Leftrightarrow\left[{}\begin{matrix}x-5=2\\x-5=-2\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=7\\x=3\end{matrix}\right.\)
\(d,\sqrt{x^2-14x+49}-5=0\\ \Leftrightarrow\sqrt{\left(x-7\right)^2}=5\\ \Leftrightarrow\left|x-7\right|=5\\ \Leftrightarrow\left[{}\begin{matrix}x-7=5\\x-7=-5\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=12\\x=2\end{matrix}\right.\)
a) \(\sqrt{x-1}+\sqrt{4x-4}-\sqrt{25x-25}+2=0\) (ĐK: \(x\ge1\))
\(\Leftrightarrow\sqrt{x-1}+\sqrt{4\left(x-1\right)}-\sqrt{25\left(x-1\right)}+2=0\)
\(\Leftrightarrow\sqrt{x-1}+2\sqrt{x-1}-5\sqrt{x-1}+2=0\)
\(\Leftrightarrow-2\sqrt{x-1}=-2\)
\(\Leftrightarrow\sqrt{x-1}=\dfrac{2}{2}\)
\(\Leftrightarrow\sqrt{x-1}=1\)
\(\Leftrightarrow x-1=1\)
\(\Leftrightarrow x=2\left(tm\right)\)
b) \(\sqrt{16x+16}-\sqrt{9x+9}+\sqrt{4x+4}+\sqrt{x+1}=16\) (ĐK: \(x\ge-1\))
\(\Leftrightarrow\sqrt{16\left(x+1\right)}-\sqrt{9\left(x+1\right)}+\sqrt{4\left(x+1\right)}+\sqrt{x+1}=16\)
\(\Leftrightarrow4\sqrt{x+1}-3\sqrt{x+1}+2\sqrt{x+1}+\sqrt{x+1}=16\)
\(\Leftrightarrow4\sqrt{x+1}=16\)
\(\Leftrightarrow\sqrt{x+1}=4\)
\(\Leftrightarrow x+1=16\)
\(\Leftrightarrow x=15\left(tm\right)\)
a:Ta có: \(\sqrt{2x+9}=\sqrt{5-4x}\)
\(\Leftrightarrow2x+9=5-4x\)
\(\Leftrightarrow6x=-4\)
hay \(x=-\dfrac{2}{3}\left(nhận\right)\)
b: Ta có: \(\sqrt{2x-1}=\sqrt{x-1}\)
\(\Leftrightarrow2x-1=x-1\)
hay x=0(loại)
c: Ta có: \(\sqrt{x^2+3x+1}=\sqrt{x+1}\)
\(\Leftrightarrow x^2+3x=x\)
\(\Leftrightarrow x\left(x+2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\left(loại\right)\\x=-2\left(loại\right)\end{matrix}\right.\)
a. \(\sqrt{2x+9}=\sqrt{5-4x}\)
<=> 2x + 9 = 5 - 4x
<=> 2x + 4x = 5 - 9
<=> 6x = -4
<=> x = \(\dfrac{-4}{6}=\dfrac{-2}{3}\)
a, \(\Leftrightarrow\left|2x-1\right|=4\)
\(\Leftrightarrow\left[{}\begin{matrix}2x-1=4\\2x-1=-4\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{5}{2}\\x=-\dfrac{3}{2}\end{matrix}\right.\)
Vậy ...
b, ĐKXĐ : \(x\ge-1\)
\(\Leftrightarrow2\sqrt{x+1}-3\sqrt{x+1}-2\sqrt{x+1}=5\)
\(\Leftrightarrow\sqrt{x+1}=-\dfrac{5}{3}\)
Vậy phương trình vô nghiệm
a)Pt \(\Leftrightarrow\left|2x-1\right|=4\)
\(\Leftrightarrow\left[{}\begin{matrix}2x-1=4\\2x-1=-4\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{5}{2}\\x=-\dfrac{3}{2}\end{matrix}\right.\)
Vậy...
b)Đk:\(x\ge-1\)
Pt\(\Leftrightarrow2\sqrt{x+1}-3\sqrt{x+1}-2\sqrt{x+1}=5\)
\(\Leftrightarrow-3\sqrt{x+1}=5\) (vô nghiệm)
Vậy...
a: \(\Leftrightarrow\dfrac{1}{3}\sqrt{x-2}-\dfrac{2}{3}\cdot3\sqrt{x-2}+6\cdot\dfrac{\sqrt{x-2}}{9}=-4\)
\(\Leftrightarrow\sqrt{x-2}=4\)
=>x-2=16
hay x=18
b: \(\Leftrightarrow\left|3x+2\right|=4x\)
\(\Leftrightarrow\left[{}\begin{matrix}3x+2=4x\left(x>=-\dfrac{2}{3}\right)\\3x+2=-4x\left(x< -\dfrac{2}{3}\right)\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=2\left(nhận\right)\\x=-\dfrac{2}{7}\left(nhận\right)\end{matrix}\right.\)
c: \(\Leftrightarrow3\sqrt{x-2}-2\sqrt{x-2}+3\sqrt{x-2}=40\)
\(\Leftrightarrow4\sqrt{x-2}=40\)
=>x-2=100
hay x=102
d: =>5x-6=9
hay x=3
\(\dfrac{1}{3}\sqrt{x-2}-\dfrac{2}{3}\sqrt{9x-18}+6\sqrt{\dfrac{x-2}{81}}=-4\) (đk: x≥2)
\(\dfrac{1}{3}\sqrt{x-2}-\dfrac{2}{3}\sqrt{9\left(x-2\right)}+6\sqrt{\dfrac{1}{81}\left(x-2\right)}=-4\)
\(\dfrac{1}{3}\sqrt{x-2}-2\sqrt{x-2}+\dfrac{2}{3}\sqrt{x-2}=-4\)
\(\dfrac{1}{3}\sqrt{x-2}-\dfrac{4}{3}\sqrt{x-2}=-4\)
\(-\sqrt{x-2}=-4\)
\(\sqrt{x-2}=4\)
\(\left|x-2\right|=16\)
\(\Leftrightarrow\left[{}\begin{matrix}x-2=16\\x-2=-16\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=18\left(TM\right)\\x=-14\left(L\right)\end{matrix}\right.\)
a) Ta có: \(\sqrt{\left(x+1\right)^2}=3\)
\(\Leftrightarrow\left|x+1\right|=3\)
\(\Leftrightarrow\left[{}\begin{matrix}x+1=3\\x+1=-3\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=2\\x=-4\end{matrix}\right.\)
b) Ta có: \(3\sqrt{4x+4}-\sqrt{9x-9}-8\sqrt{\dfrac{x+1}{16}}=5\)
\(\Leftrightarrow6\sqrt{x+1}-3\sqrt{x-3}-2\sqrt{x+1}=5\)
\(\Leftrightarrow4\sqrt{x+1}=5+3\sqrt{x-3}\)
\(\Leftrightarrow16\left(x+1\right)=25+30\sqrt{x-3}+9\left(x-3\right)\)
\(\Leftrightarrow16x+16=25+9x-27+30\sqrt{x-3}\)
\(\Leftrightarrow30\sqrt{x-3}=16x+16+2-9x\)
\(\Leftrightarrow30\sqrt{x-3}=7x+18\)
\(\Leftrightarrow x-3=\left(\dfrac{7x+18}{30}\right)^2\)
\(\Leftrightarrow x-3=\dfrac{49x^2}{900}+\dfrac{7}{25}x+\dfrac{9}{25}\)
\(\Leftrightarrow\dfrac{49}{900}x^2-\dfrac{18}{25}x+\dfrac{84}{25}=0\)
\(\Delta=\left(-\dfrac{18}{25}\right)^2-4\cdot\dfrac{49}{900}\cdot\dfrac{84}{25}=-\dfrac{16}{75}< 0\)
Vậy: Phương trình vô nghiệm
a)Pt\(\Leftrightarrow\left|x+1\right|=3\Leftrightarrow\left[{}\begin{matrix}x+1=3\\x+1=-3\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}x=2\\x=-4\end{matrix}\right.\)
b)Đk:\(x\ge-1\)
Sửa đề: \(3\sqrt{4x+4}-\sqrt{9x+9}-8\sqrt{\dfrac{x+1}{16}}=5\)
Pt \(\Leftrightarrow6\sqrt{x+1}-3\sqrt{x+1}-2\sqrt{x+1}=5\)
\(\Leftrightarrow\sqrt{x+1}=5\)
\(\Leftrightarrow x=24\left(tm\right)\)
a) \(\sqrt{7+\sqrt{2x}=3+\sqrt{5}}\) (x≥0) Đặt \(\sqrt{2x}\) = a ( a>0 )
Khi đó pt :
<=> 7+a =3 + \(\sqrt{5}\)
<=> 4+a = \(\sqrt{5}\)
<=> (4+a)\(^2\) = 5
<=> 16 + 8a + a\(^2\) = 5
<=>a\(^2\) + 8a+ 11 = 0
<=> a = -4 + \(\sqrt{5}\) (Loại) và a = -4-\(\sqrt{5}\)(Loại)
Vậy Pt vô nghiệm.
b) \(\sqrt{3x^2-4x}\) = 2x-3
<=> 3x\(^2\)- 4x = 4x\(^2\)-12x + 9
<=> x\(^2\)-8x+9 = 0
<=> x=1 , x=9
Vậy S={1;9}
c\(\dfrac{\left(7-x\right)\sqrt{7-x}+\left(x-5\right)\sqrt{x-5}}{\sqrt{7-x}+\sqrt{x-5}}\) = 2
<=> \(\dfrac{\left(\sqrt{7-x}\right)^3+\left(\sqrt{x-5}\right)^3}{\sqrt{7-x}+\sqrt{x-5}}=2\)
<=> \(\dfrac{\left(\sqrt{7-x}+\sqrt{x-5}\right)\left(7-x-\sqrt{\left(7-x\right)\left(x-5\right)}+x-5\right)}{\sqrt{7-x}+\sqrt{x-5}}=2\)
<=> \(\sqrt{\left(7-x\right)\left(x-5\right)}=0\)
<=> x=7,x=5
Vậy x=5 hoặc x=7
a:
ĐKXĐ: \(x>=-2\)
\(1+\sqrt{x^2+7x+10}=\sqrt{x+5}+\sqrt{x+2}\)
=>\(1+\sqrt{\left(x+2\right)\left(x+5\right)}=\sqrt{x+5}+\sqrt{x+2}\)
Đặt \(\sqrt{x+5}=a;\sqrt{x+2}=b\)(ĐK: a>0 và b>0)
Phương trình sẽ trở thành:
1+ab=a+b
=>ab-a-b+1=0
=>a(b-1)-(b-1)=0
=>(b-1)(a-1)=0
=>\(\left\{{}\begin{matrix}a-1=0\\b-1=0\end{matrix}\right.\Leftrightarrow a=b=1\)
=>\(\left\{{}\begin{matrix}x+5=1\\x+2=1\end{matrix}\right.\)
=>\(x\in\varnothing\)
b: \(\sqrt{4x^2-2x+\dfrac{1}{4}}=4x^3-x^2+8x-2\)
=>\(\sqrt{\left(2x\right)^2-2\cdot2x\cdot\dfrac{1}{2}+\left(\dfrac{1}{2}\right)^2}=4x^3-x^2+8x-2\)
=>\(\sqrt{\left(2x-\dfrac{1}{2}\right)^2}=4x^3-x^2+8x-2\)
=>\(\left|2x-\dfrac{1}{2}\right|=4x^3-x^2+8x-2\)(1)
TH1: x>=1/4
\(\left(1\right)\Leftrightarrow4x^3-x^2+8x-2=2x-\dfrac{1}{2}\)
=>\(4x^3-x^2+6x-\dfrac{3}{2}=0\)
=>\(x^2\left(4x-1\right)+1,5\left(4x-1\right)=0\)
=>\(\left(4x-1\right)\left(x^2+1,5\right)=0\)
=>4x-1=0
=>x=1/4(nhận)
TH2: x<1/4
Phương trình (1) sẽ trở thành:
\(4x^3-x^2+8x-2=-2x+\dfrac{1}{2}\)
=>\(x^2\left(4x-1\right)+2\left(4x-1\right)+0,5\left(4x-1\right)=0\)
=>\(\left(4x-1\right)\cdot\left(x^2+2,5\right)=0\)
=>4x-1=0
=>x=1/4(loại)