Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a,\left(đk:x\ge0\right)\)
\(x=0\Rightarrow\sqrt{0+3}+0=0\left(vô-nghiệm\right)\)
\(x>0\)
\(\)\(\sqrt{x+3}+\dfrac{4x}{\sqrt{x+3}}=4\sqrt{x}\Leftrightarrow\dfrac{\sqrt{x+3}}{\sqrt{x}}+\dfrac{4\sqrt{x}}{\sqrt{x+3}}=4\)
\(VT\ge2\sqrt{\dfrac{\sqrt{x+3}}{\sqrt{x}}.\dfrac{4\sqrt{x}}{\sqrt{x+3}}}=4\)
\(dấu"="xảy-ra\Leftrightarrow\dfrac{\sqrt{x+3}}{\sqrt{x}}=\dfrac{4\sqrt{x}}{\sqrt{x+3}}\Leftrightarrow x+3=4x\Leftrightarrow x=1\left(tm\right)\)
\(b.2x^4-5x^3+6x^2-5x+2=0\Leftrightarrow\left(x-1\right)^2\left(2x^2-2x+2\right)\Leftrightarrow\left[{}\begin{matrix}x=1\\2x^2-2x+2=0\left(vô-nghiệm\right)\end{matrix}\right.\)
Giải phương trình:
a)\(\sqrt{x^2+2x\sqrt{3}+3}=\sqrt{3}+x\)
b)\(\sqrt{x-3+2\sqrt{x-4}}=2\sqrt{x-4}+1\)
a)Pt\(\Leftrightarrow\sqrt{\left(x+\sqrt{3}\right)^2}=x+\sqrt{3}\)
\(\Leftrightarrow\left|x+\sqrt{3}\right|=x+\sqrt{3}\)
\(\Leftrightarrow x+\sqrt{3}\ge0\)\(\Leftrightarrow x\ge-\sqrt{3}\)
Vậy...
b)Đk:\(x\ge4\)
Pt\(\Leftrightarrow\sqrt{\left(x-4\right)+2\sqrt{x-4}+1}=2\sqrt{x-4}+1\)
\(\Leftrightarrow\sqrt{\left(\sqrt{x-4}+1\right)^2}=1+2\sqrt{x-4}\)
\(\Leftrightarrow\sqrt{x-4}+1=2\sqrt{x-4}+1\)
\(\Leftrightarrow\sqrt{x-4}=0\)
\(\Leftrightarrow x=4\) (tm)
Vậy...
a) Ta có: \(\sqrt{x^2+2x\sqrt{3}+3}=x+\sqrt{3}\)
\(\Leftrightarrow\left|x+\sqrt{3}\right|=x+\sqrt{3}\)
\(\Leftrightarrow\left[{}\begin{matrix}x+\sqrt{3}=x+\sqrt{3}\left(x\ge-\sqrt{3}\right)\\x+\sqrt{3}=-x-\sqrt{3}\left(x< -\sqrt{3}\right)\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x\ge-\sqrt{3}\\x=-\sqrt{3}\left(loại\right)\end{matrix}\right.\Leftrightarrow x\ge-\sqrt{3}\)
b, \(đk:x\ge2\)
Xét x=2 thay vào pt thấy không thỏa mãn => x>2 hay 27x-54>0
\(x^3-11x+36x-18=4\sqrt[4]{27x-54}\)
\(\Leftrightarrow27x^3-297x^2+972x-486=4\sqrt[4]{\left(27x-54\right).81.81.81}\le189+27x\) (cosi với 4 số dương, dấu = xảy ra khi x=5)
\(\Leftrightarrow x^3-11x^2+35x-25\le0\)
\(\Leftrightarrow\left(x-1\right)\left(x-5\right)^2\le0\) (*)
Có \(\left\{{}\begin{matrix}x>2\\\left(x-5\right)^2\ge0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x-1>0\\\left(x-5\right)^2\ge0\end{matrix}\right.\)\(\Rightarrow\left(x-1\right)\left(x-5\right)^2\ge0\) (2*)
Từ (*) và (2*) ,dấu = xra khi x=5 (thỏa mãn)
Vây pt có nghiệm duy nhất x=5
c,Có \(6\sqrt[3]{4x^3+x}=16x^4+5>0\)
\(\Leftrightarrow4x^3+x>0\)
Có: \(16x^4+5=6\sqrt[3]{4x^3+x}\le2\left(4x^3+x+2\right)\) (theo cosi với 3 số dương,dấu = xảy ra khi \(x=\dfrac{1}{2}\))
\(\Leftrightarrow16x^4-8x^3-2x+1\le0\)
\(\Leftrightarrow\left(2x-1\right)^2\left(4x^2+2x+1\right)\le0\) (*)
(tương tự câu b) Dấu = xảy ra khi \(x=\dfrac{1}{2}\)(thỏa mãn)
Vậy....
d) Đk: \(x\ge\dfrac{3}{4}\)
Áp dụng bđt cosi:
\(\sqrt{2x-1}\le\dfrac{2x-1+1}{2}=x\)
\(\Rightarrow\dfrac{1}{\sqrt{2x-1}}\ge\dfrac{1}{x}\) (*)
\(\sqrt[4]{4x-3}\le\dfrac{4x-3+1+1+1}{4}=x\)
\(\dfrac{\Rightarrow1}{\sqrt[4]{4x-3}}\ge\dfrac{1}{x}\) (2*)
Từ (*) và (2*) \(\Rightarrow\dfrac{1}{\sqrt{2x-1}}+\dfrac{1}{\sqrt[4]{4x-3}}\ge\dfrac{2}{x}\)
Dấu = xảy ra khi x=1 (tm)
a.
ĐKXĐ: $x\geq 0$
PT $\Leftrightarrow 6\sqrt{2x}-4\sqrt{2x}+5\sqrt{2x}=21$
$\Leftrightarrow 7\sqrt{2x}=21$
$\Leftrightarrow \sqrt{2x}=3$
$\Leftrightarrow 2x=9$
$\Leftrightarrow x=\frac{9}{2}$ (tm)
b.
ĐKXĐ: $x\geq -2$
PT $\Leftrightarrow \sqrt{25(x+2)}+3\sqrt{4(x+2)}-2\sqrt{16(x+2)}=15$
$\Leftrightarrow 5\sqrt{x+2}+6\sqrt{x+2}-8\sqrt{x+2}=15$
$\Leftrightarrow 3\sqrt{x+2}=15$
$\Leftrightarrow \sqrt{x+2}=5$
$\Leftrightarrow x+2=25$
$\Leftrightarrow x=23$ (tm)
c.
$\sqrt{(x-2)^2}=12$
$\Leftrightarrow |x-2|=12$
$\Leftrightarrow x-2=12$ hoặc $x-2=-12$
$\Leftrightarrow x=14$ hoặc $x=-10$
e.
PT $\Leftrightarrow |2x-1|-x=3$
Nếu $x\geq \frac{1}{2}$ thì $2x-1-x=3$
$\Leftrightarrow x=4$ (tm)
Nếu $x< \frac{1}{2}$ thì $1-2x-x=3$
$\Leftrightarrow x=\frac{-2}{3}$ (tm)
\(a,ĐK:\left\{{}\begin{matrix}x\ge5\\x\le3\end{matrix}\right.\Leftrightarrow x\in\varnothing\)
Vậy pt vô nghiệm
\(b,ĐK:x\le\dfrac{2}{5}\\ PT\Leftrightarrow4-5x=2-5x\\ \Leftrightarrow0x=2\Leftrightarrow x\in\varnothing\)
\(c,ĐK:x\ge-\dfrac{3}{2}\\ PT\Leftrightarrow x^2+4x+5-2\sqrt{2x+3}=0\\ \Leftrightarrow\left(2x+3-2\sqrt{2x+3}+1\right)+\left(x^2+2x+1\right)=0\\ \Leftrightarrow\left(\sqrt{2x+3}-1\right)^2+\left(x+1\right)^2=0\\ \Leftrightarrow\left\{{}\begin{matrix}2x+3=1\\x+1=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-1\\x=-1\end{matrix}\right.\Leftrightarrow x=-1\left(tm\right)\\ d,PT\Leftrightarrow\left|x-1\right|=\left|2x-1\right|\Leftrightarrow\left[{}\begin{matrix}x-1=2x-1\\x-1=1-2x\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=\dfrac{2}{3}\end{matrix}\right.\)
\(a,ĐK:x\ge-\dfrac{3}{2}\\ PT\Leftrightarrow2x+3=25\Leftrightarrow x=11\left(tm\right)\\ b,ĐK:x\ge2\\ PT\Leftrightarrow x^2+2x=2x+4\\ \Leftrightarrow x^2=4\Leftrightarrow\left[{}\begin{matrix}x=2\left(tm\right)\\x=-2\left(ktm\right)\end{matrix}\right.\Leftrightarrow x=2\)
a) \(\Leftrightarrow\sqrt{3}\left(x-1\right)+\left(x-1\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(\sqrt{3}-1\right)=0\Leftrightarrow x=1\)
b) \(\Leftrightarrow\sqrt{\left(x-3\right)^2}=7\)
\(\Leftrightarrow\left|x-3\right|=7\)
\(\Leftrightarrow\left[{}\begin{matrix}x-3=7\\x-3=-7\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}x=10\\x=-4\end{matrix}\right.\)
c) \(\Leftrightarrow3\left|x-2\right|=45\)
\(\Leftrightarrow\left|x-2\right|=15\)
\(\Leftrightarrow\left[{}\begin{matrix}x-2=15\\x-2=-15\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}x=17\\x=-13\end{matrix}\right.\)
\(a,PT\Leftrightarrow\sqrt{3}\left(x-1\right)=1-x\\ \Leftrightarrow\sqrt{3}\left(x-1\right)+\left(x-1\right)=0\\ \Leftrightarrow\left(x-1\right)\left(\sqrt{3}+1\right)=0\\ \Leftrightarrow x=1\left(\sqrt{3}+1\ne0\right)\\ b,ĐK:x\in R\\ PT\Leftrightarrow\left|x-3\right|=7\Leftrightarrow\left[{}\begin{matrix}x-3=7\\3-x=7\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=10\\x=-4\end{matrix}\right.\\ c,ĐK:x\in R\\ PT\Leftrightarrow3\left|x-2\right|=45\Leftrightarrow\left|x-2\right|=15\\ \Leftrightarrow\left[{}\begin{matrix}x-2=15\\2-x=15\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=17\\x=-13\end{matrix}\right.\)
a.
ĐKXĐ: \(x\ge5\)
Đặt \(\sqrt{x-5}=t\ge0\Rightarrow x-5=t^2\Rightarrow x=t^2+5\)
Phương trình trở thành:
\(t=1-\left(t^2+5\right)\)
\(\Rightarrow t^2+t+4=0\) (vô nghiệm)
Vậy pt đã cho vô nghiệm
Cách khác: ĐKXĐ: \(x\ge5\)
Do \(x\ge5\Rightarrow1-x< 0\), mà \(\sqrt{x-5}\ge0\Rightarrow\sqrt{x-5}>1-x\) hay pt vô nghiệm
b.
ĐKXĐ: \(x\ge\dfrac{1}{2}\)
\(\Leftrightarrow2x+4\sqrt{2x-1}+10=0\)
\(\Leftrightarrow2x-1+4\sqrt{2x-1}+4+7=0\)
\(\Leftrightarrow\left(\sqrt{2x-1}+2\right)^2+7=0\)
Phương trình vô nghiệm
c.
ĐKXĐ: \(x\ge-1\)
Đặt \(\sqrt{x+1}=t\ge0\Rightarrow x=t^2-1\)
Phương trình trở thành:
\(t+t^2-1=13\)
\(\Rightarrow t^2+t-14=0\Rightarrow\left[{}\begin{matrix}t=\dfrac{-1-\sqrt{57}}{2}< 0\left(loại\right)\\t=\dfrac{-1+\sqrt{57}}{2}\end{matrix}\right.\)
\(\Rightarrow\sqrt{x+1}=\dfrac{-1+\sqrt{57}}{2}\)
\(\Rightarrow x=\dfrac{27-\sqrt{57}}{2}\)
a: ĐKXĐ: \(\left\{{}\begin{matrix}x+6>=0\\x-2>=0\end{matrix}\right.\Leftrightarrow x>=2\)
\(\sqrt{x+6}-\sqrt{x-2}=2\)
=>\(\left(\sqrt{x+6}-\sqrt{x-2}\right)^2=4\)
=>\(x+6+x-2-2\sqrt{\left(x+6\right)\left(x-2\right)}=4\)
=>\(2\sqrt{\left(x+6\right)\left(x-2\right)}=2x+4-4=2x\)
=>\(\sqrt{\left(x+6\right)\left(x-2\right)}=x\)
=>\(\left\{{}\begin{matrix}x>=0\\\left(x+6\right)\left(x-2\right)=x^2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x>=2\\x^2+4x-12=x^2\end{matrix}\right.\)
=>x=3
b: ĐKXĐ: \(x-3>=0\)
=>x>=3
\(2\sqrt{x-3}-2x+3=0\)
=>\(\sqrt{4x-12}=2x-3\)
=>\(\left\{{}\begin{matrix}x>=\dfrac{3}{2}\\4x-12=4x^2-12x+9\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}x>=3\\4x^2-12x+9-4x+12=0\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}x>=3\\4x^2-16x+21=0\end{matrix}\right.\Leftrightarrow x\in\varnothing\)