K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

f) Ta có: \(\sqrt{16\left(x+1\right)}-\sqrt{9\left(x+1\right)}=4\)

\(\Leftrightarrow4\left|x+1\right|-3\left|x+1\right|=4\)

\(\Leftrightarrow\left|x+1\right|=4\)

\(\Leftrightarrow\left[{}\begin{matrix}x+1=4\\x+1=-4\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=3\\x=-5\end{matrix}\right.\)

g) Ta có: \(\sqrt{9x+9}+\sqrt{4x+4}=\sqrt{x+1}\)

\(\Leftrightarrow5\sqrt{x+1}-\sqrt{x+1}=0\)

\(\Leftrightarrow x+1=0\)

hay x=-1

17 tháng 5 2021

b, \(đk:x\ge2\)

Xét x=2 thay vào pt thấy không thỏa mãn => x>2 hay 27x-54>0

 \(x^3-11x+36x-18=4\sqrt[4]{27x-54}\)

\(\Leftrightarrow27x^3-297x^2+972x-486=4\sqrt[4]{\left(27x-54\right).81.81.81}\le189+27x\) (cosi với 4 số dương, dấu = xảy ra khi x=5)

\(\Leftrightarrow x^3-11x^2+35x-25\le0\)

\(\Leftrightarrow\left(x-1\right)\left(x-5\right)^2\le0\)  (*)

\(\left\{{}\begin{matrix}x>2\\\left(x-5\right)^2\ge0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x-1>0\\\left(x-5\right)^2\ge0\end{matrix}\right.\)\(\Rightarrow\left(x-1\right)\left(x-5\right)^2\ge0\) (2*)

Từ (*) và (2*) ,dấu = xra khi x=5 (thỏa mãn)
Vây pt có nghiệm duy nhất x=5

 

 

 

 

 

 

17 tháng 5 2021

c,Có \(6\sqrt[3]{4x^3+x}=16x^4+5>0\)

\(\Leftrightarrow4x^3+x>0\)

Có: \(16x^4+5=6\sqrt[3]{4x^3+x}\le2\left(4x^3+x+2\right)\) (theo cosi với 3 số dương,dấu = xảy ra khi \(x=\dfrac{1}{2}\))

\(\Leftrightarrow16x^4-8x^3-2x+1\le0\)

\(\Leftrightarrow\left(2x-1\right)^2\left(4x^2+2x+1\right)\le0\) (*)
(tương tự câu b) Dấu = xảy ra khi \(x=\dfrac{1}{2}\)(thỏa mãn)
Vậy....

d) Đk: \(x\ge\dfrac{3}{4}\)

Áp dụng bđt cosi:

 \(\sqrt{2x-1}\le\dfrac{2x-1+1}{2}=x\)

 \(\Rightarrow\dfrac{1}{\sqrt{2x-1}}\ge\dfrac{1}{x}\) (*)

\(\sqrt[4]{4x-3}\le\dfrac{4x-3+1+1+1}{4}=x\)

\(\dfrac{\Rightarrow1}{\sqrt[4]{4x-3}}\ge\dfrac{1}{x}\) (2*)

Từ (*) và (2*) \(\Rightarrow\dfrac{1}{\sqrt{2x-1}}+\dfrac{1}{\sqrt[4]{4x-3}}\ge\dfrac{2}{x}\)

Dấu = xảy ra khi x=1 (tm)

 

 

 


 

AH
Akai Haruma
Giáo viên
30 tháng 7 2021

a. 

ĐKXĐ: $x\geq 0$

PT $\Leftrightarrow 6\sqrt{2x}-4\sqrt{2x}+5\sqrt{2x}=21$
$\Leftrightarrow 7\sqrt{2x}=21$

$\Leftrightarrow \sqrt{2x}=3$

$\Leftrightarrow 2x=9$

$\Leftrightarrow x=\frac{9}{2}$ (tm)

b.

ĐKXĐ: $x\geq -2$

PT $\Leftrightarrow \sqrt{25(x+2)}+3\sqrt{4(x+2)}-2\sqrt{16(x+2)}=15$

$\Leftrightarrow 5\sqrt{x+2}+6\sqrt{x+2}-8\sqrt{x+2}=15$

$\Leftrightarrow 3\sqrt{x+2}=15$

$\Leftrightarrow \sqrt{x+2}=5$

$\Leftrightarrow x+2=25$

$\Leftrightarrow x=23$ (tm)

 

AH
Akai Haruma
Giáo viên
30 tháng 7 2021

c.

$\sqrt{(x-2)^2}=12$

$\Leftrightarrow |x-2|=12$

$\Leftrightarrow x-2=12$ hoặc $x-2=-12$

$\Leftrightarrow x=14$ hoặc $x=-10$

e.

PT $\Leftrightarrow |2x-1|-x=3$

Nếu $x\geq \frac{1}{2}$ thì $2x-1-x=3$

$\Leftrightarrow x=4$ (tm)

Nếu $x< \frac{1}{2}$ thì $1-2x-x=3$

$\Leftrightarrow x=\frac{-2}{3}$ (tm)

 

14 tháng 10 2021

\(a,ĐK:\left\{{}\begin{matrix}x\ge5\\x\le3\end{matrix}\right.\Leftrightarrow x\in\varnothing\)

Vậy pt vô nghiệm

\(b,ĐK:x\le\dfrac{2}{5}\\ PT\Leftrightarrow4-5x=2-5x\\ \Leftrightarrow0x=2\Leftrightarrow x\in\varnothing\)

\(c,ĐK:x\ge-\dfrac{3}{2}\\ PT\Leftrightarrow x^2+4x+5-2\sqrt{2x+3}=0\\ \Leftrightarrow\left(2x+3-2\sqrt{2x+3}+1\right)+\left(x^2+2x+1\right)=0\\ \Leftrightarrow\left(\sqrt{2x+3}-1\right)^2+\left(x+1\right)^2=0\\ \Leftrightarrow\left\{{}\begin{matrix}2x+3=1\\x+1=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-1\\x=-1\end{matrix}\right.\Leftrightarrow x=-1\left(tm\right)\\ d,PT\Leftrightarrow\left|x-1\right|=\left|2x-1\right|\Leftrightarrow\left[{}\begin{matrix}x-1=2x-1\\x-1=1-2x\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=\dfrac{2}{3}\end{matrix}\right.\)

14 tháng 10 2021

a) \(\sqrt{x-5}=\sqrt{3-x}\)

\(\left(\sqrt{x-5}\right)^2=\left(\sqrt{3-x}\right)^2\)

\(x-5=3-x\)

\(x=4\)

b) \(\sqrt{4-5x}=\sqrt{2-5x}\)

\(\left(\sqrt{4-5x}\right)^2=\left(\sqrt{2-5x}\right)^2\)

\(4-5x=2-5x\)

\(2=0\) (Vô lí)

a:Ta có: \(\sqrt{2x+9}=\sqrt{5-4x}\)

\(\Leftrightarrow2x+9=5-4x\)

\(\Leftrightarrow6x=-4\)

hay \(x=-\dfrac{2}{3}\left(nhận\right)\)

b: Ta có: \(\sqrt{2x-1}=\sqrt{x-1}\)

\(\Leftrightarrow2x-1=x-1\)

hay x=0(loại)

c: Ta có: \(\sqrt{x^2+3x+1}=\sqrt{x+1}\)

\(\Leftrightarrow x^2+3x=x\)

\(\Leftrightarrow x\left(x+2\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\left(loại\right)\\x=-2\left(loại\right)\end{matrix}\right.\)

30 tháng 8 2021

a. \(\sqrt{2x+9}=\sqrt{5-4x}\)

<=> 2x + 9 = 5 - 4x 

<=> 2x + 4x = 5 - 9

<=> 6x = -4

<=> x = \(\dfrac{-4}{6}=\dfrac{-2}{3}\)

26 tháng 10 2023

a: ĐKXĐ: x>=-3/2

\(\sqrt{x^2+4}=\sqrt{2x+3}\)

=>\(x^2+4=2x+3\)

=>\(x^2-2x+1=0\)

=>\(\left(x-1\right)^2=0\)

=>x-1=0

=>x=1(nhận)

b: \(\sqrt{x^2-6x+9}=2x-1\)(ĐKXĐ: \(x\in R\))

=>\(\sqrt{\left(x-3\right)^2}=2x-1\)

=>\(\left\{{}\begin{matrix}\left(2x-1\right)^2=\left(x-3\right)^2\\x>=\dfrac{1}{2}\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}\left(2x-1-x+3\right)\left(2x-1+x-3\right)=0\\x>=\dfrac{1}{2}\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}\left(x+2\right)\left(3x-4\right)=0\\x>=\dfrac{1}{2}\end{matrix}\right.\)

=>x=4/3(nhận) hoặc x=-2(loại)

c:

Sửa đề: \(\sqrt{4x+12}=\sqrt{9x+27}-5\)

ĐKXĐ: \(x>=-3\)

\(\sqrt{4x+12}=\sqrt{9x+27}-5\)

=>\(2\sqrt{x+3}=3\sqrt{x+3}-5\)

=>\(-\sqrt{x+3}=-5\)

=>x+3=25

=>x=22(nhận)

d: ĐKXĐ: \(\left[{}\begin{matrix}x< =\dfrac{3-\sqrt{5}}{4}\\x>=\dfrac{3+\sqrt{5}}{4}\end{matrix}\right.\)
\(\sqrt{4x^2-6x+1}=\left|2x-5\right|\)

=>\(\sqrt{\left(4x^2-6x+1\right)}=\sqrt{4x^2-20x+25}\)

=>\(4x^2-6x+1=4x^2-20x+25\)

=>\(-6x+20x=25-1\)

=>\(14x=24\)

=>x=12/7(nhận)

AH
Akai Haruma
Giáo viên
24 tháng 8 2021

a. ĐKXĐ: $x\geq 2$ hoặc $x=1$

PT $\Leftrightarrow \sqrt{(x-1)(x-2)}=\sqrt{x-1}$

$\Leftrightarrow \sqrt{x-1}(\sqrt{x-2}-1)=0$

\(\Leftrightarrow \left[\begin{matrix} \sqrt{x-1}=0\\ \sqrt{x-2}-1=0\end{matrix}\right.\Leftrightarrow \left[\begin{matrix} x=1\\ x=3\end{matrix}\right.\) (đều thỏa mãn)

b.

PT $\Leftrightarrow \sqrt{(x-2)^2}=\sqrt{(2x-3)^2}$

$\Leftrightarrow |x-2|=|2x-3|$

\(\Leftrightarrow \left[\begin{matrix} x-2=2x-3\\ x-2=3-2x\end{matrix}\right.\Leftrightarrow \left[\begin{matrix} x=1\\ x=\frac{5}{3}\end{matrix}\right.\)

AH
Akai Haruma
Giáo viên
24 tháng 8 2021

c. ĐKXĐ: $x=2$ hoặc $x\geq 3$

PT $\Leftrightarrow \sqrt{(x-2)(x-3)}=\sqrt{x-2}$

$\Leftrightarrow \sqrt{x-2}(\sqrt{x-3}-1)=0$

\(\Leftrightarrow \left[\begin{matrix} \sqrt{x-2}=0\\ \sqrt{x-3}-1=0\end{matrix}\right.\Leftrightarrow \left[\begin{matrix} x=2\\ x=4\end{matrix}\right.\) (đều tm)

d.

PT $\Leftrightarrow \sqrt{(2x-1)^2}=\sqrt{(x-3)^2}$

$\Leftrightarrow |2x-1|=|x-3|$

\(\Leftrightarrow \left[\begin{matrix} 2x-1=x-3\\ 2x-1=3-x\end{matrix}\right.\Leftrightarrow \left[\begin{matrix} x=-2\\ x=\frac{4}{3}\end{matrix}\right.\)