Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{x-1}{2013}+\frac{x-2}{2012}+\frac{x-3}{2011}=\frac{x-4}{2010}+\frac{x-5}{2009}+\frac{x-6}{2008}\)
\(\Leftrightarrow\)\(\left(\frac{x-1}{2013}-1\right)+\left(\frac{x-2}{2012}-1\right)+\left(\frac{x-3}{2011}-1\right)=\left(\frac{x-4}{2010}-1\right)+\left(\frac{x-5}{2009}-1\right)+\left(\frac{x-6}{2008}-1\right)\)
\(\Leftrightarrow\frac{x-2014}{2013}+\frac{x-2014}{2012}+\frac{x-2013}{2011}=\frac{x-2014}{2010}+\frac{x-2014}{2009}+\frac{x-2014}{2008}\)
\(\Leftrightarrow\left(x-2014\right)\left(\frac{1}{2013}+\frac{1}{2012}+\frac{1}{2011}-\frac{1}{2010}-\frac{1}{2009}-\frac{1}{2008}\right)=0\)
tự làm nốt~
kudo shinichi làm sai ở chỗ:
\(\frac{x-2013}{2011}\)phải là \(\frac{x-2014}{2011}\)mới đúng nhé
Phương trình đã cho tương đương với :
\(\frac{x-1}{2012}-1+\frac{x-2}{2011}-1+\frac{x-3}{2010}-1+...+\frac{x-2012}{1}-1+2012=2012\)
\(\Leftrightarrow\)\(\frac{x-2013}{2012}+\frac{x-2013}{2011}+\frac{x-2013}{2010}+...+\frac{x-2013}{1}=0\)
\(\Leftrightarrow\)\(\left(x-2013\right)\left(\frac{1}{2012}+\frac{1}{2011}+\frac{1}{2010}+...+\frac{1}{1}\right)=0\)
Tìm x theo như toán lớp 6 nha
\(x-2013=0\)
\(\Leftrightarrow\)\(x=2013\)
ta có pt
<=>\(\frac{x-1}{2012}-1+\frac{x-2}{2011}-1+...+\frac{x-2012}{1}-1=0\)
<=>\(\frac{x-2013}{2012}+\frac{x-2013}{2011}+...+\frac{x-2013}{1}=0\)
<=>\(\left(x-2013\right)\left(\frac{1}{2012}+\frac{1}{2011}+...+\frac{1}{1}\right)=0\Leftrightarrow x-2013=0\Leftrightarrow x=2013\)
^_^
Lời giải:
Tập xác định của phương trình
Sử dụng tính chất tỉ lệ thức, có thể biến đổi phương trình như sau
Lời giải thu được
\(\frac{x+2012}{2}+\frac{x+2010}{3}+\frac{x+2011}{5}=\frac{x}{1008}+\frac{x-2}{1009}+\frac{x+1}{2015}\)
\(\Leftrightarrow\frac{x+2012}{2}+\frac{x+2010}{3}+\frac{x+2011}{5}-\frac{x}{1008}-\frac{x-2}{1009}-\frac{x+1}{2015}=0\)
\(\Leftrightarrow\frac{x+2012}{2}+2+\frac{x+2010}{3}+2+\frac{x+2011}{5}+1-\frac{x}{1008}-2-\frac{x-2}{1009}-2-\frac{x+1}{2015}-1=0\)
\(\Leftrightarrow\frac{x+2016}{2}+\frac{x+2016}{3}+\frac{x+2016}{5}-\frac{x+2016}{1008}-\frac{x+2016}{1009}-\frac{x+2016}{2015}=0\)
\(\Leftrightarrow\left(x+2016\right)\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{5}-\frac{1}{1008}-\frac{1}{1009}-\frac{1}{2015}\right)=0\)
Mà \(\frac{1}{2}+\frac{1}{3}+\frac{1}{5}-\frac{1}{1008}-\frac{1}{1009}-\frac{1}{2015}\ne0\)
\(\Leftrightarrow x+2016=0\)
\(\Leftrightarrow x=-2016\)
Vậy tập nghiệm của phương trình là \(S=\left\{-2016\right\}\)
\(\Leftrightarrow\left(\frac{x-1}{2012}-1\right)+\left(\frac{x-2}{2011}-1\right)+...+\left(\frac{x-2012}{1}-1\right)=0\)
\(\Leftrightarrow\frac{x-2013}{2012}+\frac{x-2013}{2011}+...+\frac{x-2013}{1}=0\)
\(\Leftrightarrow\left(x-2013\right)\left(\frac{1}{2012}+\frac{1}{2011}+....+1\right)=0\)
\(\Leftrightarrow x-2013=0\)(because 1/2012 +1/2011+...+1 luôn lớn hơn 0
\(\Leftrightarrow x=2013\)
Vậy ........
Ta có:\(\frac{x-3}{2011}+\frac{x-2}{2012}=\frac{x-2012}{2}+\frac{x-2011}{3}\)
\(\Rightarrow\left(\frac{x-3}{2011}-1\right)+\left(\frac{x-2}{2012}-1\right)=\left(\frac{x-2012}{2}-1\right)+\left(\frac{x-2011}{3}-1\right)\)
\(\Rightarrow\frac{x-2014}{2011}+\frac{x-2014}{2012}=\frac{x-2014}{2}+\frac{x-2014}{3}\)
\(\Rightarrow\frac{x-2014}{2011}+\frac{x-2014}{2012}-\frac{x-2014}{2}-\frac{x-2014}{3}=0\)
\(\Rightarrow\left(x-2014\right).\left(\frac{1}{2011}+\frac{1}{2012}-\frac{1}{2}-\frac{1}{3}\right)\)
\(\Rightarrow x-2014=0\)( vì \(\frac{1}{2011}+\frac{1}{2012}-\frac{1}{2}-\frac{1}{3}\ne0\))
\(\Rightarrow x=2014\)
Vậy x= 2014.
\(\frac{x-3}{2011}+\frac{x-2}{2012}=\frac{x-2012}{2}+\frac{x-2011}{3}\)
\(\Rightarrow\left(\frac{x-3}{2011}-1\right)+\left(\frac{x-2}{2012}-1\right)=\left(\frac{x-2012}{2}-1\right)+\left(\frac{x-2011}{3}-1\right)\)
\(\Rightarrow\frac{x-2014}{2011}+\frac{x-2014}{2012}=\frac{x-2014}{2}+\frac{x-2014}{3}\)
\(\Rightarrow x=0\)
\(a,\frac{15-x}{2000}+\frac{14-x}{2001}=\frac{13-x}{2002}+\frac{12-x}{2003}\)
\(\Leftrightarrow\frac{15-x}{2000}+1+\frac{14-x}{2001}+1=\frac{13-x}{2002}+1+\frac{12-x}{2003}+1\)
\(\Leftrightarrow\frac{15-x+2000}{2000}+\frac{14-x+2001}{2001}=\frac{13-x+2002}{2002}+\frac{12-x+2003}{2003}\)
\(\Leftrightarrow\frac{2015-x}{2000}+\frac{2015-x}{2001}=\frac{2015}{2002}+\frac{2015-x}{2003}\)
\(\Leftrightarrow\left(2015-x\right)\left(\frac{1}{2000}+\frac{1}{2001}-\frac{1}{2002}-\frac{1}{2003}\right)=0\)
mà \(\frac{1}{2000}+\frac{1}{2001}-\frac{1}{2002}-\frac{1}{2003}>0\)
\(\Leftrightarrow2015-x=0\)
\(\Leftrightarrow x=2015\)
KL : PT có nghiệm \(S=\left\{2015\right\}\)
\(\frac{x-2}{2012}+\frac{x-3}{2011}+\frac{x-4}{2010}+\frac{x-2029}{5}=0\)
\(\Leftrightarrow\frac{x-2}{2012}-1+\frac{x-3}{2011}-1+\frac{x-4}{2010}-1+\frac{x-2029}{5}+3=0\)
\(\Leftrightarrow\frac{x-2014}{2012}+\frac{x-2014}{2011}+\frac{x-2014}{2010}+\frac{x-2014}{5}=0\)
\(\Leftrightarrow\left(x-2014\right)\left(\frac{1}{2012}+\frac{1}{2011}+\frac{1}{2010}+\frac{1}{5}\right)=0\)
\(\Leftrightarrow x-2014=0\).Do \(\frac{1}{2012}+\frac{1}{2011}+\frac{1}{2010}+\frac{1}{5}\ne0\)
\(\Leftrightarrow x=2014\)