K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 8 2020

Bài làm:

Ta có: \(\left(x+2\right)\left(x-2\right)\left(x^2-10\right)=72\)

\(\Leftrightarrow\left(x^2-4\right)\left(x^2-10\right)=72\)

\(\Leftrightarrow x^4-14x^2+40-72=0\)

\(\Leftrightarrow x^4-14x^2-32=0\)

\(\Leftrightarrow\left(x^4-16x^2\right)+\left(2x^2-32\right)=0\)

\(\Leftrightarrow x^2\left(x^2-16\right)+2\left(x^2-16\right)=0\)

\(\Leftrightarrow\left(x^2+2\right)\left(x^2-16\right)=0\)

Mà \(x^2+2\ge2>0\left(\forall x\right)\)

\(\Rightarrow x^2-16=0\Leftrightarrow\left(x-4\right)\left(x+4\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x-4=0\\x+4=0\end{cases}}\Rightarrow x=\pm4\)

10 tháng 8 2020

( x + 2 )( x - 2 )( x2 - 10 ) = 72

<=> ( x2 - 4 )( x2 - 10 ) = 72

<=> x4 - 14x2 + 40 - 72 = 0

<=> x4 - 14x2 - 32 = 0

Đặt t = x2 ( \(t\ge0\))

Pt <=> t2 - 14t - 32 = 0

     <=> t2 + 2t - 16t - 32 = 0

     <=> t( t + 2 ) - 16( t + 2 ) = 0

     <=> ( t - 16 )( t + 2 ) = 0

     <=> \(\orbr{\begin{cases}t-16=0\\t+2=0\end{cases}}\Rightarrow\orbr{\begin{cases}t=16\\t=-2\end{cases}}\)

\(t\ge0\Rightarrow t=16\)

=> x2 = 16

=> \(x=\pm4\)

12 tháng 2 2019

\(\left(x^2+x\right)^2+4\left(x^2+x\right)=12\)

Đặt \(a=x^2+x\)

\(\Leftrightarrow a^2+4a=12\)

\(\Leftrightarrow a^2+4a-12=0\)

\(\Leftrightarrow a^2+6a-2a-12=0\)

\(\Leftrightarrow a\left(a+6\right)-2\left(a+6\right)=0\)

\(\Leftrightarrow\left(a+6\right)\left(a-2\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}a=-6\\a=2\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}x^2+x=-6\\x^2+x=2\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}x^2+2\cdot x\cdot\frac{1}{2}+\frac{1}{4}+\frac{23}{4}=0\\x^2+2x-x-2=0\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}\left(x+\frac{1}{2}\right)^2=\frac{-23}{4}\left(loai\right)\\\left(x+2\right)\left(x-1\right)=0\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}x=-2\\x=1\end{cases}}\)

Vậy....

28 tháng 2 2020

Ta có : \(3x\left(1-x\right)+\left(x+3\right)\left(x-2\right)=-2\left(x-4\right)^2\)

=> \(3x\left(1-x\right)+\left(x+3\right)\left(x-2\right)=-2\left(x^2-8x+16\right)\)

=> \(3x-3x^2+x^2+3x-2x-6=-2x^2+16x-32\)

=> \(3x-3x^2+x^2+3x-2x-6+2x^2-16x+32=0\)

=> \(-12x+26=0\)

=> \(x=\frac{26}{12}=\frac{13}{6}\)

Vậy phương trình trên có tập nghiệm là \(S=\left\{\frac{13}{6}\right\}\)

28 tháng 2 2020

mơn bạn nhìu

12 tháng 2 2016

( x-2) ( x+2 ) ( x2 - 10 ) = 72

<=> ( x2-4 ) (  x2 - 10 ) = 72

<=> ( x2-7+3) ( x2-7-3)=72

<=> ( x^2-7)^2 -9 = 72 

<=> ( x^2 -7)^2 = 81

<=> x^2-7 = -9 hoặc 9

mà x^2-7 luôn lớn hơn hoặc bằng -7

<=> x^2-7 = 9

<=> x^2 = 16

<=> x = 4 hoặc -4

Đúng thì nhấn đáng hộ nhé 

12 tháng 2 2016

pt này có kết quả

x=4 hoặc -4

21 tháng 2 2019

\(\left(x-2\right)\left(x+2\right)\left(x^2-10\right)=72\)

<=>\(\left(x^2-4\right)\left(x^2-10\right)=72\) (1)

Đặt \(x^2-7=t\)

=> pt (1) <=> \(\left(t+3\right)\left(t-3\right)=72\)

<=> \(t^2-9=72\)

<=> \(t^2-81=0\)

<=> \(\left(t-9\right)\left(t+9\right)=0\)

Tự làm nốt

21 tháng 2 2019

\(8x^2-\left(4x+3\right)^3+\left(2x+3\right)^3=0\)

\(\Leftrightarrow8x^2+\left(2x+3-4x-3\right)\left[\left(4x+3\right)^2+\left(2x+3\right)\left(4x+3\right)+\left(2x+3\right)^2\right]=0\)

\(\Leftrightarrow8x^2-2x\left(16x^2+24x+9+8x^2+18x+9+4x^2+12x+9\right)=0\)

\(\Leftrightarrow2x\left(4x-28x^2-54x-27\right)=0\)

\(\Leftrightarrow2x\left(28x^2+50x+27\right)=0\)

Tự làm nốt

20 tháng 8 2017

Đặt x-7=a ta có \(a\left(a+2\right)\left(a+3\right)\left(a+5\right)=72\)\(\Rightarrow\left(a^2+5a\right)\left(a^2+5a+6\right)=72\) Đặt \(a^2+5a=b\)ta có \(b\left(b+6\right)=72\)từ đó tìm ra b, suy ra a và tìm x nha bn!

1 tháng 2 2023

1) |x| + x2 - x = x  + 10 (1)

Nếu x < 0 thì 

|x| = - x 

Khi đó (1) <=> x2 - 3x - 10 = 0

Có \(\Delta=\left(-3\right)^2-4.\left(-10\right).1=49>0\)

=> Phương trình 2 nghiệm : \(x_1=\dfrac{3+\sqrt{49}}{2}=5\left(\text{loại}\right);x_2=\dfrac{3-\sqrt{49}}{2}=-2\)

Nếu \(x\ge0\Leftrightarrow\left|x\right|=x\)

Phương trình (1) <=> x2 - x - 10 = 0

\(\Delta=\left(-1\right)^2-4.\left(-10\right).1=41>0\)

=> Phương trình 2 nghiệm \(x_1=\dfrac{1+\sqrt{41}}{2};x_2=\dfrac{1-\sqrt{41}}{2}\left(\text{loại}\right)\)

Vậy tập nghiệm phương trình \(S=\left\{-2;\dfrac{1+\sqrt{41}}{2}\right\}\)

1 tháng 2 2023

2) x2 - 1 + x2 - 4 = 3

<=> 2x2 = 8

<=> x2 = 4

<=> \(x=\pm2\)

Tập nghiệm \(S=\left\{2;-2\right\}\)

AH
Akai Haruma
Giáo viên
28 tháng 2 2020

Lời giải:

$3x(1-x)+(x+3)(x-2)=-2(x-4)^2$

$\Leftrightarrow (3x-3x^2)+(x^2-2x+3x-6)=-2(x^2-8x+16)$

$\Leftrightarrow -2x^2+4x-6=-2x^2+16x-32$

$\Leftrightarrow 12x=26\Rightarrow x=\frac{13}{6}$

Vậy........

14 tháng 6 2017

\(\left(x-2\right)\left(x+2\right)\left(x^2-10\right)=72\)

\(\Leftrightarrow\left(x^2-4\right)\left(x^2-10\right)=72\)

\(\Leftrightarrow\left(x^2-4\right)\left(x^2-4-6\right)=72\\\) ( * )

Đặt \(t=x^2-4\)

Khi đó phương trình ( * ) trở thành:

\(t.\left(t-6\right)=72\)

\(\Leftrightarrow t^2-6t=72\)

\(\Leftrightarrow t^2-6t-72=0\)

\(\Leftrightarrow\left(t-12\right)\left(t+6\right)=0\)

\(\Leftrightarrow\left\{{}\begin{matrix}t-12=0\\t+6=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}t=12\\t=-6\end{matrix}\right.\)

* Với \(t=12\)\(\Rightarrow x^2-4=12\Rightarrow x^2=16\Rightarrow x=+-4\)

* Với \(t=-6\Rightarrow x^2-4=-6\Leftrightarrow x^2=-2\) ( vô lý )

Vậy.............................................

14 tháng 6 2017

\(\left(x-2\right)\left(x+2\right)\left(x^2-10\right)=72\)

\(\Leftrightarrow\left(x^2-4\right)\left(x^2-10\right)=72\)

\(\Leftrightarrow x^4-10x^2-4x^2+40=72\)

\(\Leftrightarrow x^4-14x^2+40=72\)

\(\Leftrightarrow\left(x^2-7\right)^2=81\)

\(\Leftrightarrow x^2-7=9\)

\(\Leftrightarrow x^2=16\)

\(\Leftrightarrow x=\pm\sqrt{16}=\pm4\).

Vậy .........